LightRAG:创新双级检索系统,整合图形结构,实现更强大信息检索!

检索增强生成(RAG)系统通过集成外部知识源,提升了大型语言模型(LLMs)的准确性和上下文相关性。然而,现有的RAG方法仍存在明显的不足,包括对平面数据表示的依赖和对复杂上下文的处理能力不足,这常常导致回答碎片化,无法捕捉信息之间的深层关系。

为了解决这些问题,我们推出了LightRAG。这一创新框架将图形结构引入文本索引和信息检索过程,采用双级检索系统,提升了从低级和高级知识发现中获取综合信息的能力。图形结构与向量表示的结合,不仅优化了检索效率,还支持对相关实体及其关系的精确搜索,显著缩短响应时间,并保持强烈的上下文关联性。增量更新算法的集成,确保了系统在动态数据环境中的敏捷性和时效性。

在实际应用中,LightRAG可以通过两个层级的检索策略应对各种复杂查询需求:第一层级关注具体实体及其关系的精准信息检索,第二层级覆盖更广泛的主题范围。这种结合细节与整体的检索方式,保证了用户获取的回答更贴合实际需求,信息更连贯。

此外,图结构的整合使得LightRAG能够识别信息间的复杂相互依赖性,将原本可能分散的答案编织成逻辑严谨的响应。广泛的实验结果表明,LightRAG在检索准确性和响应速度上均优于现有系统。代码已开源,详情请访问:LightRAG项目地址。

LightRAG 增强了分段检索系统 将文档转换为更小、更易于管理的片段。此策略允许快速 识别和访问相关 信息,而无需分析整个文档。接下来,我们利用LLMs 来识别和 提取各种实体(例如 名称、日期、位置和事件)以及它们之间的关系。这通过此收集的信息进程将用于创建一个全面的知识图谱,该图谱突出显示跨整个文档集合。基于图形的文本索引中使用的函数 paradigm 的描述如下:

这张图片展示了LightRAG框架的整体架构,主要涉及以下几个步骤和组件:

  1. 图形化文本索引
  • 文本经过处理,提取出实体及其关系。例如,从“BEKEEPER”相关的文本段落中提取出“Beekeeper”和“Bees”等实体。

  • 通过实体识别和关系提取,将这些信息以图形结构的形式进行组织。

  • 重复的实体会被去重,生成的图形索引用于后续的信息检索。

  1. 索引图的创建
  • 实体之间的关系被映射到图中,图中节点表示不同的实体或概念,边表示实体之间的关系。

  • 通过这种方式,图结构可以更好地表达数据中的上下文信息,帮助系统理解复杂的相互依赖关系。

  1. 双级检索策略
  • 在检索过程中,LightRAG采用双级检索:低级检索侧重于具体的细节和实体(如“Beekeeper”、“Honey Bee”等),而高级检索涵盖更广泛的主题(如“农业”、“生产”或“环境影响”等)。

  • 这种双级策略能够更好地响应不同层次的问题,既能回答具体的问题,也能提供整体的背景信息。

  1. 检索与生成集成
  • 检索到的信息根据查询的需求与语言模型(LLM)结合,生成最终的响应。

  • 图结构中包含的实体、关系和上下文信息,能够提高响应的连贯性和上下文关联性。

  1. 增量更新与响应生成
  • 系统支持动态数据更新,通过增量更新算法保证图形结构的及时更新。

  • 在图结构的基础上生成的响应,结合了最新的数据和最相关的实体与关系,从而提升系统的响应质量和速度。

整体上,LightRAG框架通过图形化索引和双级检索策略,克服了传统RAG系统的局限,使得信息检索和生成的过程更加智能和高效。

简要概括安装和使用LightRAG的过程如下:

  1. 源码安装(推荐)
cd LightRAG
pip install -e .
  1. 通过PyPI安装

    pip install lightrag-hku
    
  2. 如果使用OpenAI模型,请在环境中设置OpenAI API密钥。

  3. 快速开始

import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete

#########
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
# import nest_asyncio 
# nest_asyncio.apply() 
#########

WORKING_DIR = "./dickens"


if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)

rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=gpt_4o_mini_complete  # Use gpt_4o_mini_complete LLM model
    # llm_model_func=gpt_4o_complete  # Optionally, use a stronger model
)

with open("./book.txt") as f:
    rag.insert(f.read())

# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))

# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))

# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))

# Perform hybrid search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))

参考:https://github.com/HKUDS/LightRAG

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值