面向开发者的 NVIDIA Omniverse(内含免费电子书下载)

NVIDIA Omniverse™ 是一个由应用编程接口(API)、软件开发套件和服务组成的平台。通过它,开发者能够将 OpenUSDNVIDIA RTX™ 渲染技术轻松集成到现有的软件工具和仿真工作流中,开发适用于工业数字化和物理 AI 仿真的 OpenUSD 应用。基于 Omniverse 核心技术构建的应用程序从根本上改变了复杂的 3D 工作流程,使个人和团队能够构建统一的工具和数据管线,并为工业和科学用例模拟物理精准的大规模虚拟世界。

NVIDIA Omniverse 的工作原理

Omniverse 采用模块化架构构建,可分为核心技术和服务,您可以直接将其集成到工具和应用中,并根据需求进行定制。这种方法简化了集成,增强了可扩展性,并减少了不必要的开发开销。

如何在 NVIDIA Omniverse 上进行开发和体验?

  • 平台 SDK(软件开发套件)

对于希望从零开始构建应用的开发者,NVIDIA 提供了 Omniverse Kit SDK,以及可轻松定制和扩展的免费示例应用,可以直接下载体验。

  • Cloud APIs(应用编程接口)

Omniverse 核心技术以 API 形式提供。通过调用 Omniverse Cloud API,能够轻松地将 OpenUSD 数据互操作性和基于物理的 NVIDIA RTX 实时渲染直接集成到您的应用、工作流和服务中。

  • NVIDIA NIM™ 微服务

NVIDIA 通过 NIM 微服务将生成式 AI 引入 OpenUSD 工作流,借助 NVIDIA 用于 OpenUSD 开发的生成式 AI 模型,开发者能够将生成式 AI copilot 和智能体整合到 USD 工作流中,加速 3D 世界开发和创建的可能性。

利用 Omniverse 构建生成式物理 AI 和工业数字化应用

NVIDIA Omniverse 能够利用 OpenUSD、RTX 和生成式 AI 技术来构建 3D 应用和工具,从而将互操作性和高级图形引入数字孪生用例。

  • **虚拟设施集成:**利用 Omniverse SDK 和 API 开发先进的虚拟工厂解决方案,实现工业资产和流程的全面设计、仿真和优化。

  • **产品配置器:**开发并部署支持生成式 AI 的产品配置器,为汽车、零售、媒体和娱乐领域带来交互式体验。

  • **合成数据生成:**开发者可以通过将合成数据与真实数据结合使用,利用合成数据增强 AI 训练,从而加速模型开发并降低成本。

  • **强化学习:**借助仿真中的强化学习,机器人可以通过试错法在任何虚拟环境中进行训练。这使得机器人能够发展出复杂的粗略和精细运动技能,这些技能对于现实世界中的自动化任务(如抓取新型物体、四足行走以及学习复杂的操作技能)至关重要。

  • **自动驾驶汽车模拟:**借助用于自动驾驶汽车模拟的 NVIDIA Omniverse™ Cloud API,开发者可以通过高保真传感器模拟、物理和逼真的行为来增强自动驾驶汽车 (AV) 模拟工作流,以训练感知模型并在闭环测试中验证 AV 软件堆栈。

关于 OpenUSD

说到 Omniverse 便不得不提 OpenUSD(通用场景描述),OpenUSD 是 NVIDIA Omniverse 平台的基础。

在 CG 电影或游戏、工业工程、科学实验等计算机图形和模拟制作流程中,通常会生成、存储和传输大量 3D 数据,制作流程中很多应用程序(包括建模、着色、动画、照明、渲染等),都有自己的专属场景描述和资产格式,其他应用程序不可读、不可编辑。按照传统的线性协作流程,意味着这些数据资产需要在多个部门、多个人员之间进行频繁地格式转换和修改,费时又费力,还可能会造成数据丢失或错误。

面对这样的情况,OpenUSD 应运而生。OpenUSD 最初由 Pixar Animation Studio 发明,并于 2016 年开源,由于其具有各种强大的功能,不仅在视觉效果领域得到广泛应用,还应用于建筑和工程、制造、产品设计和机器人技术等各个领域。OpenUSD 不仅仅是指一种文件格式,也指一个用于在 3D 世界内进行描述、合成、仿真和协作的开放式可扩展生态系统。

NVIDIA 也与合作伙伴和开源社区密切合作,不断加速和扩大 OpenUSD 在各个行业的应用。NVIDIA 与 Pixar、Adobe、 Apple 和 Autodesk 共同成立了 OpenUSD 联盟 (AOUSD),致力于促进 OpenUSD 的标准化、开发、演进和发展。一方面,NVIDIA 致力于拓宽 OpenUSD 的开发范围, 帮助工业和科学领域构建物理精准的大规模数字孪生。另一方面,对 OpenUSD 进行投资, 使其包含许多面向未来的功能,例如地理空间坐标、连接 glTF 文件格式、实时程序化、对网络浏览器的支持,以及实时串流物联网数据等。

OpenUSD 的源代码在 GitHub 上,是开源项目。开发者可以使用 C++ 和 Python 来进行开发。而且,为了让更多开发者和企业用户了解并迅速掌握基于 Omniverse 平台的开发技能,NVIDIA 配备了很多学习资源,包括更新文档、教程、技术博客、Omniverse社区等。NVIDIA 深度学习培训中心(DLI)也提供许多免费的 OpenUSD 培训课程,包括从基础理论到行业应用实践等。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值