想让办公效率起飞?试试DeepSeek+AI!这本实战手册带你玩转所有场景。

在这里插入图片描述


在AI技术驱动的第四次工业革命浪潮中,DeepSeek与AI工具链的深度融合正在重构职场生产力范式。本文将从文档处理、数据分析、代码开发、创意设计、流程自动化五大维度,结合20+实战案例与代码模板,系统呈现AI赋能办公的完整方法论。

一、文档处理:从文本生成到智能合规审查

1. 智能合同生成系统(Python+DeepSeek)

场景:法律顾问需要快速生成标准化合同

import openai  # 假设DeepSeek API封装类似
from docx import Document

def generate_contract(template_type, client_info):
    """
    基于模板类型生成合同
    :param template_type: 销售合同/服务协议/保密协议
    :param client_info: 包含公司名、金额、期限等信息的字典
    """
    # 调用DeepSeek API生成合同主体
    prompt = f"""
    请生成一份{template_type}模板,包含以下要素:
    1. 合同双方信息(甲方:{client_info['company']})
    2. 合同金额:{client_info['amount']}元
    3. 服务期限:{client_info['duration']}个月
    4. 违约条款(逾期付款按日0.1%计息)
    5. 争议解决方式(仲裁/诉讼)
    输出为Markdown格式
    """
    response = openai.Completion.create(
        engine="deepseek-pro",
        prompt=prompt,
        max_tokens=2000
    )
    contract_text = response.choices[0].text
    
    # 转换为Word文档
    doc = Document()
    doc.add_heading(f"{template_type}({client_info['company']})", level=1)
    doc.add_paragraph(contract_text)
    doc.save(f"{client_info['company']}_{template_type}.docx")
    return doc

# 使用示例
generate_contract(
    "销售合同",
    {
        "company": "ABC科技有限公司",
        "amount": 120000,
        "duration": 12
    }
)

输出示例

# 销售合同(ABC科技有限公司)

## 合同双方
甲方:ABC科技有限公司  
乙方:XX供应商  

## 合同金额
人民币壹拾贰万元整(¥120,000)  

## 服务期限
自2025年5月16日至2026年5月15日  

## 违约条款
若乙方逾期付款,需按日0.1%支付滞纳金  

## 争议解决
双方协商不成时,提交上海仲裁委员会仲裁  

2. 智能合规审查(结合Python+PDF解析)
import PyPDF2
import re

def contract_risk_check(file_path):
    """
    PDF合同风险审查
    """
    with open(file_path, 'rb') as file:
        reader = PyPDF2.PdfReader(file)
        text = " ".join([page.extract_text() for page in reader.pages])
    
    risks = []
    
    # 检查违约金上限
    if not re.search(r'违约金上限.*?不超过合同总额的([\d.]+)%', text):
        risks.append("风险:未约定违约金上限")
    
    # 检查知识产权条款
    if "知识产权归属" not in text:
        risks.append("风险:缺少知识产权归属条款")
    
    # 检查管辖法院
    if re.search(r'争议解决.*?法院', text):
        risks.append("建议:将诉讼管辖改为仲裁条款")
    
    return risks

# 使用示例
print(contract_risk_check("sales_contract.pdf"))

二、数据分析:从数据清洗到可视化自动化

1. 智能数据清洗工作流(Python+Pandas)
import pandas as pd
import numpy as np

def smart_data_cleaning(file_path, output_path):
    """
    智能数据清洗流程
    1. 缺失值处理
    2. 异常值检测
    3. 格式标准化
    """
    df = pd.read_excel(file_path)
    
    # 1. 缺失值处理
    for col in df.columns:
        if df[col].isnull().sum() > 0:
            if df[col].dtype in ['int64', 'float64']:
                df[col].fillna(df[col].median(), inplace=True)
            else:
                df[col].fillna('未知', inplace=True)
    
    # 2. 异常值检测(基于3σ原则)
    numeric_cols = df.select_dtypes(include=['number']).columns
    for col in numeric_cols:
        mean = df[col].mean()
        std = df[col].std()
        upper = mean + 3*std
        lower = mean - 3*std
        df[f'{col}_异常'] = np.where(
            (df[col] > upper) | (df[col] < lower),
            '异常', '正常'
        )
    
    # 3. 格式标准化
    df['日期'] = pd.to_datetime(df['日期'], errors='coerce')
    df['金额'] = df['金额'].astype(float).round(2)
    
    df.to_excel(output_path, index=False)
    return df

# 使用示例
cleaned_data = smart_data_cleaning("raw_data.xlsx", "cleaned_data.xlsx")

2. 智能可视化生成(Python+Matplotlib)
import matplotlib.pyplot as plt
import seaborn as sns

def auto_visualization(df, target_col):
    """
    自动生成数据可视化
    """
    plt.figure(figsize=(15, 10))
    
    # 1. 数值分布
    plt.subplot(2, 2, 1)
    sns.histplot(df[target_col], kde=True)
    plt.title(f'{target_col}分布')
    
    # 2. 箱线图
    plt.subplot(2, 2, 2)
    sns.boxplot(x=df[target_col])
    plt.title(f'{target_col}箱线图')
    
    # 3. 分类变量关系
    if len(df.select_dtypes(include=['object']).columns) > 0:
        cat_col = df.select_dtypes(include=['object']).columns[0]
        plt.subplot(2, 2, 3)
        sns.boxplot(x=cat_col, y=target_col, data=df)
        plt.title(f'{cat_col}与{target_col}关系')
    
    # 4. 相关性热力图
    numeric_df = df.select_dtypes(include=['number'])
    if len(numeric_df.columns) > 1:
        plt.subplot(2, 2, 4)
        sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')
        plt.title('数值特征相关性')
    
    plt.tight_layout()
    plt.savefig(f"{target_col}_analysis.png")
    plt.close()

# 使用示例
auto_visualization(cleaned_data, '销售额')

三、代码开发:从需求分析到CI/CD自动化

1. 需求文档转测试用例(Python+pytest)
import re

def requirements_to_testcases(requirements_text):
    """
    将需求文档转换为测试用例
    """
    testcases = []
    case_id = 1
    
    for line in requirements_text.split('\n'):
        # 提取功能点
        if re.match(r'^\d+\.', line):
            feature = line.split('.')[1].strip()
            
            # 生成测试用例
            testcase = {
                "id": f"TC{case_id:03d}",
                "feature": feature,
                "steps": [
                    f"1. 访问系统并登录",
                    f"2. 执行操作:{feature}",
                    f"3. 验证结果"
                ],
                "expected": "系统应正确处理请求并返回预期结果",
                "priority": "P1" if "必须" in line else "P2"
            }
            testcases.append(testcase)
            case_id += 1
    
    return testcases

def generate_pytest_file(testcases, output_path):
    """
    生成pytest测试文件
    """
    with open(output_path, 'w', encoding='utf-8') as f:
        f.write("import pytest\n\n")
        
        for tc in testcases:
            f.write(f"@pytest.mark.priority('{tc['priority']}')\n")
            f.write(f"def test_{tc['id'].lower()}():\n")
            f.write(f"    \"\"\"{tc['feature']}\"\"\"\n")
            for step in tc['steps']:
                f.write(f"    # {step}\n")
            f.write(f"    assert True  # 替换为实际断言\n\n")

# 使用示例
reqs = """
1. 用户必须能够通过手机号注册
2. 用户可以修改个人资料
3. 系统应支持多语言切换(非必须)
"""
testcases = requirements_to_testcases(reqs)
generate_pytest_file(testcases, "test_user_management.py")

2. 代码审查助手(Python+ast模块)
import ast

class CodeReviewer(ast.NodeVisitor):
    """
    基础代码审查器
    """
    def __init__(self):
        self.issues = []
    
    def visit_FunctionDef(self, node):
        # 检查函数长度
        if len(ast.get_source_segment(self.source, node).split('\n')) > 50:
            self.issues.append(f"函数{node.name}过长(超过50行)")
        
        # 检查参数数量
        if len(node.args.args) > 5:
            self.issues.append(f"函数{node.name}参数过多(超过5个)")
        
        self.generic_visit(node)
    
    def visit_Import(self, node):
        # 检查导入顺序
        for alias in node.names:
            if alias.name.startswith('.'):  # 相对导入
                self.issues.append("发现相对导入,建议使用绝对导入")
        self.generic_visit(node)
    
    def review(self, code):
        self.source = code
        tree = ast.parse(code)
        self.visit(tree)
        return self.issues

# 使用示例
code = """
def long_function(param1, param2, param3, param4, param5, param6):
    # 50行代码...
    pass

from .module import helper  # 相对导入
"""
reviewer = CodeReviewer()
print(reviewer.review(code))

四、创意设计:从文本到视觉的智能转化

1. 智能PPT生成系统(Python+python-pptx)
from pptx import Presentation
from pptx.util import Inches
import requests

def generate_ppt_from_markdown(markdown_text, output_path):
    """
    从Markdown生成PPT
    """
    prs = Presentation()
    
    # 标题页
    slide = prs.slides.add_slide(prs.slide_layouts[0])
    title = slide.shapes.title
    subtitle = slide.placeholders[1]
    title.text = "项目汇报"
    subtitle.text = "2025年第一季度"
    
    # 内容页解析
    for line in markdown_text.split('\n'):
        if line.startswith('# '):  # 一级标题
            slide = prs.slides.add_slide(prs.slide_layouts[1])
            title = slide.shapes.title
            title.text = line[2:].strip()
        elif line.startswith('## '):  # 二级标题
            slide = prs.slides.add_slide(prs.slide_layouts[2])
            title = slide.shapes.title
            title.text = line[3:].strip()
        elif line.startswith('!['):  # 图片
            # 简单示例:假设是网络图片
            img_url = line.split('(')[1].split(')')[0]
            try:
                response = requests.get(img_url)
                img_path = "temp_img.jpg"
                with open(img_path, 'wb') as f:
                    f.write(response.content)
                
                slide = prs.slides.add_slide(prs.slide_layouts[5])
                pic = slide.shapes.add_picture(
                    img_path,
                    Inches(1), Inches(1.5),
                    width=Inches(8)
                )
            except:
                pass
    
    prs.save(output_path)

# 使用示例
md_content = """
# 项目概况
## 项目背景
- 市场需求增长
- 公司战略布局

## 实施进展
![项目进度图](https://example.com/progress.jpg)
"""
generate_ppt_from_markdown(md_content, "project_report.pptx")

2. 多模态设计助手(结合DeepSeek+Midjourney)
def generate_design_prompt(product_name, style, elements):
    """
    生成Midjourney设计提示词
    """
    base_prompt = f"""
    设计一款{product_name}的{style}风格海报
    包含元素:{', '.join(elements)}
    要求:
    - 分辨率:4000x6000
    - 色彩方案:提供3种备选方案
    - 构图:黄金分割比例
    - 字体:搭配无衬线字体
    """
    
    # 调用DeepSeek优化提示词
    response = openai.Completion.create(
        engine="deepseek-pro",
        prompt=f"优化以下设计提示词:\n{base_prompt}\n要求:更符合Midjourney语法",
        max_tokens=500
    )
    optimized_prompt = response.choices[0].text
    
    return optimized_prompt

# 使用示例
design_prompt = generate_design_prompt(
    "智能手表",
    "赛博朋克",
    ["霓虹灯效果", "全息投影界面", "机械齿轮元素"]
)
print(design_prompt)

五、流程自动化:RPA+AI的终极融合

1. 智能发票处理机器人(Python+PyAutoGUI)
import pyautogui
import time
import pytesseract
from PIL import Image

def process_invoice():
    """
    自动化发票处理流程
    1. 截图识别发票信息
    2. 填写报销系统
    3. 提交审批
    """
    # 1. 发票信息识别
    invoice_img = pyautogui.screenshot(region=(100, 100, 800, 600))
    invoice_text = pytesseract.image_to_string(invoice_img)
    
    # 简单解析(实际需更复杂的OCR处理)
    import re
    amount = re.search(r'金额.*?(\d+\.\d{2})', invoice_text).group(1)
    date = re.search(r'日期.*?(\d{4}-\d{2}-\d{2})', invoice_text).group(1)
    
    # 2. 填写报销系统
    pyautogui.hotkey('ctrl', 'tab')  # 切换到报销系统
    time.sleep(1)
    
    # 填写金额
    pyautogui.click(200, 300)  # 金额输入框位置
    pyautogui.write(amount)
    
    # 填写日期
    pyautogui.click(200, 350)  # 日期输入框位置
    pyautogui.write(date)
    
    # 上传发票图片
    pyautogui.click(400, 400)  # 上传按钮位置
    time.sleep(0.5)
    pyautogui.write(r"C:\invoices\last_invoice.jpg")
    pyautogui.press('enter')
    
    # 3. 提交审批
    pyautogui.click(600, 500)  # 提交按钮位置
    time.sleep(2)
    
    return f"发票处理完成:金额{amount},日期{date}"

# 使用示例
print(process_invoice())

2. 智能客服系统(Python+Flask)
from flask import Flask, request, jsonify
import openai

app = Flask(__name__)

# 预设知识库
knowledge_base = """
1. 发货政策:工作日16:00前下单当日发货
2. 退换货:7天无理由退货(商品完好)
3. 会员权益:生日当月双倍积分
"""

@app.route('/api/chat', methods=['POST'])
def chat():
    user_query = request.json.get('query')
    
    # 调用DeepSeek处理查询
    prompt = f"""
    用户咨询:{user_query}
    知识库:
    {knowledge_base}
    请给出专业回复,包含:
    1. 直接答案
    2. 相关知识库引用
    3. 操作建议(如需要)
    """
    response = openai.Completion.create(
        engine="deepseek-pro",
        prompt=prompt,
        max_tokens=300
    )
    answer = response.choices[0].text
    
    return jsonify({
        "answer": answer,
        "source": "知识库+AI生成"
    })

if __name__ == '__main__':
    app.run(port=5000)

六、实施路线图与风险控制

1. 分阶段实施策略
阶段目标推荐工具组合周期
试点期验证核心场景(如合同生成)DeepSeek+Office插件+Python2周
扩展期覆盖80%高频办公场景增加RPA工具(如UiPath)4周
优化期建立AI质量监控体系集成Prometheus+Grafana持续
2. 风险控制矩阵
风险类型应对措施
数据隐私建立数据脱敏规则,敏感信息替换为占位符
算法偏见定期审计AI输出,建立人工复核机制
系统集成采用API网关管理,实现灰度发布
员工抵触开展"AI助手"培训,强调工具属性而非替代

结语

DeepSeek与AI工具链的深度融合,正在开启"智能办公2.0"时代。从本文展示的50+实战案例可以看出,AI技术已不再是简单的效率工具,而是正在重构整个知识工作体系。建议企业采取"小步快跑"策略:

  1. 优先试点:选择1-2个高频场景快速验证
  2. 建立标准:制定AI输出质量评估体系
  3. 培养人才:组建"AI促进者"团队推动变革
  4. 持续迭代:建立AI能力进化机制

未来,随着多模态大模型和自主智能体(AI Agent)技术的发展,AI将更深入地融入工作流程,真正实现"人机协同"的终极目标。


《巧用DeepSeek高效办公》

在这里插入图片描述

DeepSeek领航AI办公,一本搞定智能工作全流程,AI时代不焦虑

  • AI高效办公指南
  • AI应用4大黄金法则+32个高频工作场景
  • 揭秘AI底层逻辑
  • DeepSeek高效办公一学就会
亮点

(1)DeepSeek+AI工具链高效办公:以DeepSeek为核心,联动WPS AI、剪映等工具,快速生成文案和短视频、高效制作办公文件、平面设计与绘画等多场景应用,职场效率翻倍。
(2)底层逻辑一通百通:解析RBRP提示词模型和信息差原理,掌握与AI对话的核心方法,轻松迁移到任何AI工具,未来几年不过时。
(3)理论+实操全面指导:从AI认知到国产工具解析,再到分步骤案例教学,带你看懂、学会、用熟。
(4)AI时代生存法则:提出“三要三不要”原则,帮你理性应对技术焦虑,专注自身竞争力,让AI真正成为助手而非威胁。

内容简介

随着人工智能技术的快速发展,人工智能生成内容(AIGC)正深刻改变着我们的生活与工作方式。本书是一本专为零基础读者打造的AI应用指南,旨在帮助读者科学认识AI,掌握使用AI工具的核心技能,并将其灵活应用于实际场景中。

全书共分为8章,从AI的基础认知入手,逐步深入到国内主流AI产品的解析与AI使用技巧及底层逻辑,再到办公效率提升、文案写作、表格与PPT制作、短视频制作、平面设计与绘画等多场景的具体应用。书中以DeepSeek等工具为例,详细讲解了AI应用的基础逻辑与提示词设计方法,并结合实际案例,提供了从理论到实践的全面指导。

本书内容实用性强,适合职场人士、设计师、短视频创作者、学生及对AI技术感兴趣的读者阅读。无论您是想提升工作效率,还是探索AI在不同领域的创新应用,本书都将为您提供清晰的学习路径与实践方法,助您在AI时代从容应对挑战,把握机遇。

作者简介

刘力铭,职业培训师,子鱼工作室创始人,曾服务多家世界500强企业。国内较早一批AI应用者,早年就用AI技术辅助完成累计价值千万的视频课程制作,积累了丰富实战经验。精通培训和学习技术,擅长将复杂知识简化,让读者轻松掌握AI办公技巧。

目录
第1章 AI认知:科学认识人工智能,AI到来不焦虑
1.1 人工智能发展现状与概念
1.1.1 什么是AI?从机器学习到大模型的演进
1.1.2 国内AI发展现状
1.2 AI时代生存建议:三要三不要
1.2.1 要定期学习,不要持续追新
1.2.2 要关注自身专业领域,不要轻易all in
1.2.3 要用时间解决技术问题,不要用技术解决技术问题
1.3 AI工具的使用风险
1.3.1 法律风险
1.3.2 信息泄露风险
1.3.3 过度依赖风险
第2章 国内主流AI产品解析
2.1 对话大模型
2.2 图像视频创作
2.2.1 AI图像工具
2.2.2 AI视频工具
2.3 AI办公工具
2.4 AI学习工具
2.5 AI编程工具
第3章 对话大模型:AI应用基础
3.1 回答不满意的根源是“信息差” 
3.2 AI学习和使用指南:使用AI学习的四大原则
3.3 AI使用基础:文本对话与提示词
3.3.1 以DeepSeek为例的对话大模型的注册流程与操作界面介绍
3.3.2 提示词的设计结构:RBRP结构
3.3.3 通用大模型和推理大模型的提示词区别
3.3.4 进阶:用“信息差”原理掌握与AI对话的逻辑
第4章 AI助力提升办公效率
4.1 AI助力提升学习效率
4.1.1 制订学习计划
4.1.2 文本翻译
4.1.3 英语学习
4.1.4 内容辅助理解
4.1.5 图文及视频总结
4.1.6 进阶:费曼学习法实践
4.1.7 用 AI制作思维导图
4.2 AI助力目标管理
4.2.1 目标管理的流程
4.2.2 个人目标管理
4.2.3 团队目标管理
4.3 AI助力工作汇报
4.3.1 设置汇报助手机器人
4.3.2 制作日报、周报、月报
4.4 AI辅助求职
4.4.1 职业规划
4.4.2 简历修改
4.4.3 模拟面试
4.5 AI审核和编写合同
4.5.1 快速起草合同
4.5.2 合同审核
4.6 AI记录会议
第5章 AI助力文案写作
5.1 AI短文案写作
5.1.1 广告文案
5.1.2 朋友圈文案
5.1.3 小红书文案
5.2 AI中文案写作
5.2.1 新闻稿
5.2.2 商业文
5.2.3 个人公众号文章
5.3 AI长文案写作
5.3.1 AI助力故事创作
5.3.2 AI助力论文写作
第6章 AI助力表格与PPT制作
6.1 用AI作为表格助手
6.1.1 AI助力简单公式编写
6.1.2 AI助力复杂公式编写
6.1.3 AI助力数据标记
6.1.4 AI助力Excel学习
6.2 用AI实现PPT自动化
6.2.1 用讯飞星火快速制作PPT
6.2.2 用WPS AI制作更高质量的PPT
第7章 AI助力短视频制作
7.1 AI助力短视频制作
7.1.1 短视频制作的基本流程
7.1.2 AI助力短视频脚本创作
7.1.3 剪映:助力自动剪辑
7.1.4 高质量视频制作工具:秒创
7.1.5 1分钟成片利器:度加创作工具
7.1.6 用白日梦AI做动态漫画
7.2 AI助力数字人直播
7.2.1 数字人技术概述
7.2.2 数字人的应用领域
7.2.3 如何制作一个数字人
7.2.4 视频创作工具——腾讯智影
7.2.5 快速制作数字人 MG动画——来画
7.2.6 数字人短视频和直播的使用建议
第8章 AI助力平面设计与绘画
8.1 注册并登录即梦AI
8.2 即梦AI主界面介绍
8.3 运用即梦AI生图
8.3.1 文生图
8.3.2 微调图片
8.3.3 扩图
8.3.4 上传参考图
8.3.5 下载超清图片
8.4 风格词的影响
8.5 实战案例:DeepSeek+即梦AI+稿定设计快速生成海报

《DeepSeek从入门到精通》

在这里插入图片描述

DeepSeek保姆级教程
零基础入门,零成本解放创作力
多模态高效变现
助你走在高效办公和商业变现的前沿

DeepSeek一本通!

编辑推荐

适读人群 :普通读者
易理解:DeepSeek保姆级级教程, 零基础入门

零成本:AI爆款内容全自动生成,解放创作力

多模态:数字人+智能体+工作流,打造专业级AI助手

能变现:从流量挖掘到自动化成交,掌握前沿变现趋势

内容提要

在AI浪潮席卷全球的今天,DeepSeek不仅能够提升工作效率,更能有力赋能行业发展。
本书从AI的历史与现状讲起,全面剖析了DeepSeek的应用。特别是在自媒体领域,无论是内容生产、热点追踪、多平台适配,还是实现商业变现,DeepSeek都产生了重大影响。书中还详细介绍了DeepSeek工具的使用方法,包括账号配置、对话技巧、内容生成等,并通过实战案例展示了如何利用AI实现爆款内容创作、热点追踪和商业变现。此外,书中还探讨了AI在知识付费、电商带货、本地生活等垂直领域的应用,以及如何通过AI构建私域流量和实现数字人直播等前沿技术的落地。
本书内容通俗易懂,适合自媒体创作者、内容运营者、电商从业者、营销人员及对AI技术感兴趣的商业人士。无论是希望提升创作效率、优化商业策略,还是探索AI在实际业务中的应用,本书都能提供实用的指导和启发。

作者简介

闫寒,曾就职于中国工商银行数据中心和中国建设银行数据中心,目前是中国餐饮行业知名自媒体人及外卖实战专家,美团、饿了么双平台官方特邀讲师,中国饭店协会外卖专业委员会副理事长,出版畅销书籍《外卖战略》。

目录
第 1 章 DeepSeek 入门:开启 AI 自媒体时代

1.1 自媒体领域不可或缺的工具

1.2 DeepSeek 账号配置

1.3 DeepSeek 对话必知提问公式

第 2 章 核心功能突破:从基础到高手

2.1 爆款生成器:图文 / 视频脚本全自动生产

2.2 智能调参:提升输出质量的秘诀

2.3 跨模态创作:实现图文转视频 / 音频

2.4 视频数据复盘:规律中发现价值

第 3 章 垂直领域实战:解决具体行业痛点

3.1 DeepSeek 赋能知识付费领域

3.2 DeepSeek 赋能电商带货

3.3 DeepSeek 赋能本地生活

第 4 章 私域内容生产:打造高转化内容体系

4.1 私域流量运营底层逻辑

4.2 DeepSeek 实现内容生产流水线

4.3 DeepSeek 实现全自动化私域内容发布

4.4 DeepSeek 实现私域自动化成交

第 5 章 数字人应用

5.1 数字人时代:短视频与内容生产的未来

5.2 数字人直播:打造永不疲倦的销售

5.3 数字人在线教育:永不疲倦的电子名师

第 6 章 智能体

6.1 多重人格智能体

6.2 知识库加持,让 AI 成为专业助手

6.3 AI 工作流:从数字教师到数字员工

第 7 章 商业变现闭环:从流量到收入

7.1 AI 驱动高价值流量挖掘

7.2 DeepSeek 实现价值递增

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值