文章的主要内容是关于多模态隐喻检测的研究,提出了一种名为C4MMD的框架,利用链式思维(CoT)方法来提高小型模型在隐喻检测任务中的表现。隐喻广泛存在于广告和互联网迷因中,但由于这些迷因的多样性和文本数据的不足,传统的检测方法面临挑战。研究中,作者设计了一个三步流程,通过大型语言模型(MLLMs)提取和整合图像与文本的知识,进而增强模型对隐喻特征的识别能力。实验结果表明,该方法显著提高了小型模型的隐喻检测能力,超越了现有的模型表现。这项研究为利用MLLMs在复杂语言与视觉任务中的应用开辟了新的方向。
1 C4MMD框架
知识摘要模块
- ·该模块通过利用大型语言模型(MLLMs)来提取和整合多模态信息。首先,它设计了一种三步模板,分别关注图像和文本的信息,并在最后一步将两者结合,以便于获取更深层次的语义理解。
· 链式思维(CoT)方法
- ·通过链式思维方法,框架引导MLLMs逐步理解图像和文本的内容。第一步聚焦于图像的描述,第二步则分析文本的含义,最后将这两部分信息融合,形成对隐喻更全面的理解。
· 多模态融合结构
- ·C4MMD框架还设计了一个多模态融合结构,用于有效地将提取到的信息转化为隐喻特征。这一结构能够将来自不同模态的特征进行整合,提升隐喻检测的准确性。
· 辅助任务
- ·框架中还包含一些辅助任务,旨在进一步提高模型对隐喻特征的识别能力。这些辅助任务帮助模型在处理图像和文本的同时,保持对隐喻存在与否的判断。
· 小型模型的增强
- ·C4MMD的设计目标是提升小型模型的表现。通过将大型模型的知识传递到小型模型中,框架有效地提高了小型模型在多模态隐喻检测任务中的能力。
2 结语
文章提出了一种名为C4MMD的框架,通过链式思维方法增强智能体对多模态隐喻的检测能力,显著提高了模型的表现。
论文题目: Exploring Chain-of-Thought for Multi-modal Metaphor Detection
论文链接: https://aclanthology.org/2024.acl-long.6/
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。