Nature Communications|生成式人工智能模型实现早期肺癌检测

01.工作速览

液体活检有潜力通过无创早期检测肿瘤来彻底改变癌症护理。开发一个稳健的液体活检测试需要从大量患者的血液样本中收集高维数据。

2024年11月21日,加利福尼亚大学在_Nature Communications_ 在线发表题为**“Deep generative AI models analyzing circulating orphan non-coding RNAs enable detection of early-stage lung cancer的研究论文。作者提出,变分自编码器的生成能力使学习血液生物标志物的稳健和可推广的签名成为可能。**

在这项研究中,作者分析了1050名被诊断为不同阶段非小细胞肺癌(NSCLC)的个体的血清样本中的孤儿非编码RNA(oncRNAs),以及性别、年龄和BMI匹配的对照组。作者证明多任务生成性人工智能模型Orion,在整体性能和对保留数据集的泛化能力方面,超越了常用的方法。Orion在所有阶段的癌症检测中实现了94%(95% CI: 87%-98%)的整体敏感性,在87%(95% CI: 81%-93%)的特异性下,比其他方法在保留验证数据集上的敏感性高出约30%以上。

02.匠心独运

由于促炎巨噬细胞向抗炎巨噬细胞的复极化受损,传统的骨组织工程材料难以在糖尿病期间恢复生理性骨重塑。

图1:基于oncRNA的液体活检平台和Orion架构。a 从TCGA组织数据集中发现了NSCLC oncRNAs,并在患有NSCLC的患者和非癌症对照组的血液中进行了研究。展示了一个类比,将NSCLC oncRNA指纹比作手写数字,血清oncRNA指纹比作嘈杂的模式,生成性AI嵌入比作去噪版本。在BioRender中创建。Alipanahi, B. (2024) BioRender.com/b61n795。b Orion架构需要两个输入计数矩阵,用于oncRNAs(x)和内源性表达RNAs(r)。每个输入都输入到一个标准VAE中,目标是学习在零膨胀负二项分布下的oncRNA计数的联合表示(右侧)。联合嵌入将被用于癌症推断神经网络进行分类任务(右下角)。c 在模拟数据上应用三元组边际损失的示意图。左侧面板显示了一个与标签无关的嵌入,右侧面板显示了一个带有三元组边际损失约束的嵌入,以最小化技术变化,同时保留生物学差异。对于每个样本,使用正锚(相同表型,不同数据集)和负锚(不同表型,任何数据集)来最小化或最大化嵌入距离。d 损失收敛图显示了Orion的5个损失在训练期间的收敛情况以及分类准确性。

03.卓越性能

图2:模型在训练集和验证集上的性能。a 在模型训练的10个不重叠的折叠调整集上,Orion(红色)、XGBoost(蓝色)和SVM分类器(绿色)的ROC曲线图。垂直的蓝色线显示了90%的特异性。文本显示了在90%特异性下的ROC曲线下面积和敏感性,以及95%的置信区间。b 在90%特异性下,模型对不同癌症阶段肿瘤的敏感性,分别为Orion(红色)、XGBoost(蓝色)和SVM分类器(绿色)。误差条表示95%的置信区间。条形图显示了每个类别中的样本数量。c 按T评分(大小)分层的模型敏感性,类似于(b)。d 在保留的验证数据集上的二元分类性能指标。基于在10折交叉验证训练数据集中实现90%特异性的截止值,计算了所有依赖阈值的指标(除了ROC曲线下面积)。条形高度显示了ROC曲线下面积、F1分数、Matthew相关系数(MCC)、敏感性和特异性的点估计值。e 条形图显示了前20个oncRNAs(y轴)的SHAP分数的log1p(x轴)。y轴标签表示离oncRNA最近的基因。第一行显示了接下来的20个oncRNAs(按SHAP分数排名第21至第40的oncRNAs)的总和。对于基因A,[A]表示重叠,[]A表示1千碱基对的距离,[] − A表示10千碱基对的距离,[] − − A表示100千碱基对的距离,[]表示在1兆碱基对距离内没有基因。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值