Databricks又融了100亿美元,融资超过OpenAI,太值钱了

云数据平台供应商 Databricks Inc. 今天宣布,公司以高达 620 亿美元估值成功完成了 100 亿美元 J 轮融资。

此次融资不仅是 2024 年迄今为止规模最大的风险投资交易,也堪称历史上最大规模的风险投资之一,其金额甚至超过了生成式人工智能领域巨头 OpenAI 今年秋天所筹集的 66 亿美元。

Databricks 成立于 2013 年,现在已经成为数据分析和人工智能领域的领先企业。公司由 Apache Spark 的创始成员联合创立,并迅速发展成为全球市值最高的非上市科技公司之一。

2023 年 9 月 I 轮融资时,Databricks 估值 430 亿美元,完成了 5 亿美元融资,一年多时间,估值上涨 44%,可见 Databricks 在资本市场的强大吸引力。**完成本轮融资后,**Databricks 已成为美国估值第四高的初创公司,仅次于 OpenAI、SpaceX 和 Stripe。

这轮 J 轮融资的结果并不出人意料。事实上,关于 Databricks 正在寻求资金的消息早在上个月就已开始流传。当时,有知情人士向 CNBC 透露,Databricks 正在寻求至少 50 亿美元的融资。而就在上周,路透社进一步报道称,由于投资者的兴趣超出预期,融资总额有望超过 95 亿美元。

近期,支持 OpenAI 完成数十亿美元融资的 Thrive Capital 携手 Andreessen Horowitz、DST Global、GIC、Insight Partners 和 WCM Investment Management 等知名投资机构,共同领投了 Databricks 的这一轮融资。此外,安大略省教师退休基金、ICONIQ Growth、MGX、Sands Capital 和 Wellington Management 等投资方也参与了此次融资活动。据悉,这笔交易被业界视为有史以来规模最大的创业公司融资之一。

企业正越来越多地采用 Databricks 平台来存储和分析海量数据,并在此基础上构建人工智能模型。该平台的核心优势在于其所谓的 “数据湖屋” 概念,这是一种融合了数据湖和数据仓库特性的先进数据管理系统。

数据湖主要用于以成本效益高的方式存储非结构化和半结构化数据,而数据仓库则专注于存储结构化数据。Databricks 的平台不仅整合了这两种存储解决方案的优势,还支持 ACID(原子性、一致性、隔离性、持久性)标准,这是一套确保数据可靠性和一致性的关键标准,特别是在系统发生故障时,能够保障数据不会丢失。

同时,Databricks 还宣布其年度化收入运行率(ARR)预计将在本季度末突破 30 亿美元大关。这一增长部分得益于 Databricks SQL 的强劲表现,该产品作为公司功能集的一部分,专注于构建数据仓库环境。Databricks 透露,Databricks SQL 的收入运行率同比增长超过 150%,达到 6 亿美元。

Databricks SQL 是公司近年来在其核心数据湖架构之上构建的众多产品之一。在 AI 领域,Databricks 同样展现出了其产品路线图的重点发展方向。Databricks 在这一市场的技术投入和人才布局,得益于去年以 13 亿美元收购的机器学习初创公司 Mosaic AI Inc.,该公司的技术和专业人才为 Databricks 的 AI 产品线注入了新的活力。

该公司通过此次收购,成功启动了一个新的 AI 研究部门。今年 3 月,该部门推出了 DBRX,一款基于专家混合架构的先进开源大模型。DBRX 的创新之处在于,当接收到查询时,它仅激活必要的组件来生成答案,而非传统做法中的激活所有组件,这种优化明显降低了硬件资源的使用。

Databricks 还进一步将 Mosaic 的技术融入其核心平台之中。今年 6 月,公司发布了两款 AI 工具,用于比较 LLM 的性能,并助力构建基于检索增强生成(RAG)应用程序。最近,Databricks 还引入了一项新功能 —— 一个应用程序接口,用于生成合成训练数据集,进一步增强了其 AI 解决方案的能力。

Databricks 联合创始人兼 CEO Ali Ghodsi 在接受采访时提出了一个观点:“未来,**我们将越来越多地关注于构建数据和 AI 本身,而非围绕它们构建的应用程序。**应用程序的重要性将逐渐降低。” 他进一步解释说,“用户界面的特定设计、事物的外观将不再占据主导地位。甚至数据的形式也将变得不那么重要,因为生成式 AI 能够深入理解并处理数据。”

Databricks 今天还表示,其最新一轮融资的部分资金将被用于开发更多的 AI 产品。公司还计划通过收购来扩大其国际市场运营,并大幅增强其全球影响力。此外,一部分资金将被用于为现有员工和前员工提供股权流动性。

随着账上资金再增加 100 亿美元,Databricks 可能会更加专注于强化其资产负债表,并为上市做准备。公司披露,预计本季度将首次实现正向自由现金流。上个月,Ghodsi 曾表示,Databricks 计划最早于 2025 年下半年进行公开上市。


如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值