这篇文章,我们来看一道快手的大模型面试真题:transformer 编码和 llama 有啥区别。
这道题很多同学回答不好,把三角函数编码和 RoPE 单拎出来,都能说出一些来,但更进一步,还没有人回答的特别深入。尤其是问与 RoPE 有没有什么联系,绝大多数同学都觉得没啥关系。
01
面试官心理分析
这道题有考察点有几个:
-
首先是看你知不知道 LLaMA 的位置编码用的是什么?这个如果不知道,后面就不用讲(编)下去了。
-
第二个考察点是线性代数的一些基本功,包括旋转矩阵,线性变换,还有三角函数的性质。
-
最后一点是能从本质出发,分析三角函数编码和 RoPE 的区别和联系。
02
面试题解析
Transformer 采用的是绝对位置编码,叫三角函数编码,LLaMA 采用了旋转位置编码(RoPE)。
其中三角位置编码函数如下:
从原论文我们可以看到这样一句描述:
通过论文的解释我们可以了解到,从本质上,这个函数其实是相对位置 k 的一个线性变换,所以可以改写成这样的形式:
这个特性就让 Transformer 模型能够捕获到相对位置关系。
那论文中讲到的这个线性变换到底是什么呢?
深入分析一下,三角函数位置编码的物理意义可以把每个维度拆开来看,三角函数编码就像是一个时钟,时钟有时,分,秒三个维度,只不过它这里是 D/2 个维度。
假设处于 t 位置的编码为 PE(t),则 PE(t+k) 就是在 PE(t) 在每个维度上顺时针旋转,每个维度的旋转角度大小是 k*theta。
那论文中提到相对位置 k 的线性变换,正是这里的顺时针旋转变换。
那三角函数位置编码和旋转位置编码有什么关系呢?回想线性代数的知识,顺时针旋转矩阵可以表示为:
那 RoPE 就巧妙的对每个维度两两分组,构造出 pair 对之间的相对位置关系:
对于所有 pair 来说,上面这个矩阵就完美的表达了 PE(t+k) 是相对于 PE(t) 按一定角度的顺时针旋转。
所以对于每一维就是利用的三角函数编码的组合,这一点跟绝对位置编码没有区别。
最后,RoPE 还把这个顺时针旋转计算利用复数变换和共轭的思想合并到 self-attention 的计算中。
对于 token 中的每个词向量,首先计算其对应的 query 和 key 向量,然后对每个 token 位置计算对应的旋转位置编码。
接着对每个 token 位置的 query 和 key 向量的元素按照两两一组应用旋转变换,最后再计算 query 和 key 之间的内积得到 self-attention 的计算结果。
03
总结
最后总结一下,所谓 RoPE,就是在 Attention 模块让模型感知到相对位置,但是它不改变 Attention 的结构,反而像绝对位置编码一样,在输入层做文章,对输入向量做改造。
改造后 Attention 模块能够重新感知到相对位置,同样能把位置信息弥补回来,因此 RoPE 可以说是使用绝对位置编码的方式实现了相对位置编码,是两者的融合。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈