AI agent市场图谱
在本文中我们通过挖掘CB Insights数据库,绘制了包含170多家AI agent初创公司的市场图谱,覆盖26个类别。本文还提供了关于AI agent的发展前景、局限性和未来方向的展望。
这些数据来源于哪里?
"数字协作者"正从概念走向现实。
虽然AI助手已经在各行业取得进展,但下一阶段的演变——具有更广泛决策范围的自主智能体正快速到来。AI agent初创公司在2024年融资达38亿美元(几乎是2023年的三倍),而且每个科技巨头都在开发AI agent或提供相关工具。
对企业的影响将是深远的,从改变劳动力结构(人类与AI agent的混合团队)到通过全面自动化常规任务来最大化运营效率。
以下我们列出了170多家有前景的开发AI agent基础设施和应用的初创公司。
我们根据Mosaic健康评分(500+)和/或近期融资情况(2022年以来)选择公司。我们仅包括私营公司,并根据其主要业务进行分类。此市场图谱并非此领域的详尽列表。
*AI agent展望*
完全自主的智能体因可靠性、推理能力和访问权限等问题而受到限制。当今大多数agent应用都在"护栏"内运行——在受约束的架构中,例如,基于LLM的系统遵循决策树来完成任务。
本图谱中的智能体包含以下组件的某种组合:
- 推理能力: 支持复杂推理、语言理解和决策的基础模型。这些模型评估信息并构成智能体的认知核心。
- 记忆系统: 存储、组织和检索短期上下文信息和长期知识的系统。
- 工具使用: 允许智能体与外部应用、API、数据库、互联网和其他软件交互的集成能力。
- 规划能力: 智能体将复杂任务分解为更易管理的步骤、反思表现并适时调整的架构。
我们预计随着AI能力的提升,更多初创公司将提高其自主性。推理和记忆能力的改进将实现更复杂的决策、适应性和任务执行。
理解AI agent的框架
例如,2024年9月,法律AI初创公司Harvey宣布,OpenAI的o1推理模型,结合领域专业知识和数据,使其能够构建法律智能体。该公司在2025年2月以30亿美元估值融资3亿美元,过去6个月销售团队规模翻倍,表明市场需求增长。
虽然上述市场图谱主要突显私营企业景观(聚焦企业应用),但科技巨头和现有企业也在推出智能体。我们预测大型科技公司和领先的LLM开发商将主导通用AI agent,但小型专业化公司仍有诸多机会。
展望未来,值得关注超越助手/聊天机器人界面的新形态,这将拓展"agent"的边界。这方面的早期迹象包括"AI原生"工作空间——从头围绕AI能力构建的工具和平台,而非简单地在传统产品上叠加AI功能。例如:
- Eve[1]的法律平台旨在自动化案件生命周期的各个方面(从案件接收到起草)。
- Hebbia[2]的Matrix产品构建能从文件中挖掘信息(按行)并回答问题(按列)的电子表格,主动发现、组织和呈现数据。
- The Browser Company[3]通过其Dia产品,探索能总结内容、自动化重复网络任务,甚至能预测下一步行动的网页浏览界面。
欢迎订阅我们的星球,可以获得学习Agent、RAG课程:《动手设计Al Agents:CrewAI版》《高级RAG之36技》、新技术实战:中文LazyGraphRAG/Manus+MCP/GRPO+Agent、最新技术热点追踪解读等
类别概览
AI agent基础设施
这一部分涵盖构建agent专用基础设施的公司。(我们排除了通用生成式AI基础设施市场[4],如基础模型和向量数据库)。
开发工具
已经出现了多样化的工具生态系统支持智能体开发。这些工具范围从像Letta[5]这样的记忆框架,使交互中的持久、可检索记忆成为可能;到允许智能体通过集成(如Composio[6])、认证(如Anon[7])和浏览器自动化(如Browserbase[8])采取行动的工具。
另一组公司在支付[9](包括为智能体开发加密钱包和虚拟卡的公司)和语音[10](开发平台和AI语音应用测试工具以及语音模型)领域为智能体提供更多实用功能。
同时,对简化、全面部署选项的需求推动了AI agent开发平台[11]的兴起——这是我们图谱中最拥挤的基础设施市场。
包括Cohere[12](通过其North AI工作空间)和Mistral[13]在内的LLM开发商已推出自己的agent开发框架,而Amazon[14]、Microsoft[15]、Google[16]和Nvidia[17]都提供AI agent开发工具。由于许多企业因风险较低而青睐成熟供应商[18],大型科技公司在这方面具有显著优势。
信任与性能
围绕可靠性和安全性的担忧促成了agent评估与可观察性工具[19]市场。早期公司针对自动测试(如Haize Labs[20])和性能跟踪(如Langfuse[21])等应用。
多智能体系统[22],即专业化子智能体协同完成任务[23],也在提高准确性方面显示出前景。Insight Partners支持的CrewAI[24]的多智能体编排平台据报道已被40%的财富500强企业使用。
供应商也直接解决可靠性问题。根据我们2025年第一季度与20多家AI agent初创公司的交流,公司建立用户信任主要使用5种方法:
- 透明度
- 人工监督
- 技术保障
- 安全与合规
- 持续改进
横向应用与职能
横向AI agent初创公司构成了图谱和整体格局的近一半。
这一部分主要包括面向企业的初创公司,提供跨职能的行业通用应用,如人力资源/招聘[25]、营销[26]和安全运营[27]。生产力与个人助理[28]市场的公司,包括带有Operator agent的OpenAI[29],直接面向消费者和员工。
根据公司的中位Mosaic健康评分,吸引力最大的AI agent市场是客户服务[30]和软件开发(包括编码[31]和代码审查与测试[32]智能体)。这些市场也是最拥挤的,原因是智能体在明确定义的工作流程和可测试环境中带来的价值[33]。
我们在采用方面也看到了这一点,特别是在客户服务层面:在2024年12月CB Insights调查的64个组织中,三分之二表示他们正在使用或将在未来12个月内在客户支持中使用AI agent。
总体而言,与基础设施和垂直细分市场相比,横向AI agent应用在商业上更为成熟,根据CBI商业成熟度评分[34],超过三分之二的市场正在部署或扩展其解决方案。
AI agent的未来发展?
垂直(行业特定)应用
随着初创公司通过解决行业特定客户问题来开拓利基市场,我们预计垂直细分化将增加,尤其是在严格监管和数据敏感的领域。
这一类别包括服务于以下行业的公司:
- 金融服务与保险: 图谱上最拥挤的垂直类别,有11家公司,初创公司针对各种金融服务工作流程,如金融研究(Boosted.ai[35]和Wokelo[36])、保险销售与支持(Alltius[37]和Indemn[38])以及财富顾问前景挖掘与运营(Finny AI[39]和Powder[40])。
- 医疗健康: 此市场的解决方案旨在减少医疗专业人员的手动任务,涵盖临床文档、收入周期运营、呼叫中心和虚拟分诊等用例。像Thoughtful AI[41](收入周期运营)和Hippocratic AI[42](人员配置市场)等公司的解决方案针对端到端医疗保健工作流程。
- 工业: 这些公司寻求优化流程和设备——包括控制系统、机器人和其他工业机器——而不依赖持续的人工干预。例如,Composabl[43]在2024年5月推出了一个agent平台,使用LLM为控制工业设备的智能体创建技能和目标。上市公司如Palantir[44]也活跃在这一领域。
好了,这就是我今天想分享的内容。如果你对构建AI智能体感兴趣,别忘了点赞、关注噢~
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈