从A2A与MCP协议的背后看,AI智能体如何改变我们的未来?

昨天,你可能听到了一件震动AI圈的大事——谷歌发布了全新的开放协议Agent2Agent(简称A2A)。短短几小时后,朋友圈、微信群、甚至AI领域专家群都炸锅了。

图片

事实上,最近我们都被各种"AI智能体"(Agent)的消息刷屏:从OpenAI的DeepResearch到前段时间一夜爆火全网的Mannus,到最近的AutoGLM,Google Deep Research… 再到国内各大厂的相继布局,智能体似乎突然之间成了AI领域最热门的赛道。

一. A2A、MCP是什么,好在哪?

首先,为什么Agent会引发如此狂热?Google的A2A和Anthropic的MCP协议到底是什么?又为什么会出现,成为行业焦点?

今天,咱们好好从头来聊下这几个问题。

大家都知道,在AI智能体兴起之前,我们都在什么形式交互?就是那种"你问我答"式的对话。你输入一个问题,AI给你一个回答,就这么简单。可现在这种简单的交互模式明显满足不了大家的需求了。

其实AI发展到今天,单纯的"大模型问答"已经无法满足用户需求了。就像你不可能总是盯着ChatGPT问问题,然后自己变成一个复制粘贴的“CV怪”一样。人们希望AI能够自主行动、持续工作、具备协作能力。这就是智能体****(Agent)的核心价值——AI从 "动的对话机器"变成"动的****助手

图片

但问题来了:如果每个公司的智能体都各自为政,互不兼容,那用户岂不是要在各个应用间来回切换?企业想开发应用,又要针对不同平台写不同代码?这简直就是当年手机系统割裂的噩梦重演!

于是,统一标准的需求应运而生。这就是Google的A2A和Anthropic的MCP协议出现的背景。

这里有一个标志性的事情,就是随着AI智能体的出现,我们发现"协议"和“标准”这个东西变得越来越重要了。很多科技媒体把A2A和MCP描述得很复杂,但其实用我们熟悉的例子就能解释清楚:

你可以把“AI智能体”看成是“人”,而A2A理解为AI智能体世界的"**"**。还记得微信出现前,我们需要在QQ、MSN、飞信等多个工具间切换吗?微信的出现让所有人都能在一个平台上沟通,建立群聊,分享名片。

图片

首先,想象一下你的微信朋友圈:小李做餐饮,小王搞装修,小张是做金融理财的。大家平常没事刷刷朋友圈,岁月静好。可是突然有一天,小李要装修餐厅,小王正巧缺钱,小张正巧手上有闲钱投资。于是他们在朋友圈喊话,几乎瞬间达成合作。

但AI圈却没这么幸福。之前的AI们就像被关在了单独的小黑屋里:你家Agent负责邮件处理,我家负责日程管理,他们之间不能直接交流。每次协作必须开发接口,就像小李想联系小王,还得专门请一个"中间人"去传话,效率低得可怕。

A2A协议的出现,就是给每个Agent一个"朋友圈":各个AI智能体之间可以自由发消息、互通合作意愿。只要发出任务(Task),其他AI收到后可以直接响应并合作完成。

图片

我这里用类比的方式,更通俗给大家讲下,A2A协议在技术层面上到底是怎么运作的:

图片

  • *Agent Card**(代理卡)≈**你的微信名片***

每个Agent都有一张自己的名片,上面标明了他擅长什么、用什么语言(JSON、XML等)、能干哪些活。所有Agent进入“A2A朋友圈”前,先递名片,方便彼此认识。

  • *Task**(任务)****≈*** *朋友圈喊话***

你朋友圈喊一声:“我这周末想爬山,有没有一起的?”在A2A里,这就是Task。其他Agent看到这个消息后可以决定要不要接单。

  • *Artifacts**(成果物)****≈*** *发朋友圈的照片或视频***

完成任务后的成果,在A2A里叫Artifact,比如生成的报告、统计的数据,和你完成爬山后发朋友圈晒的合影很类似。

  • *Push Notifications**(推送通知)****≈*** *点赞提醒***

如果任务比较复杂、需要很长时间才能完成,A2A允许发起的Agent随时收到进度更新。就像你发了朋友圈,总能第一时间收到谁点赞、谁评论的提醒。

I 向下滑动可查看全部内容

总的来讲,A2A就是AI智能体的"社交协**"它定义了各个Agent的身份系统、任务机制****、消息格式和安全验证。**想象一下,当你的个人助理Agent需要帮你预订机票,它可以直接通过A2A协议与航空公司的订票Agent沟通,整个过程就像两个人在微信上聊天一样顺畅。

相比之下,MCP则像是智能体世界的"USB-C统一**“"支付宝”****。**在没有统一支付平台前,你逛不同商场要带 不同会员卡、银行卡;有了支付宝,一机在手走遍天下。

图片

MCP定义了统一接口、数据格式和权限管理,让智能体可以更方便高效地接入数据库、调用工具。

图片

作为AI智能体中的两种协议,A2A和MCP其实是不一样的,分别代表了两种维度上的标准。A2A是在横向上解决智能体之间的协同问题,而MCP是在纵向上解决智能体调用工具的问题,构成了A2A横向协同和MCP纵向增强互补格局

图片

二. A2A和MCP的背后是什么?

表面上看,A2A和MCP只是技术标准,但再往深了看,这其实是一场激烈的商业角力。Google为什么如此热衷于推广A2A?

深层次原因有三:首先是**弯道超车OpenAI形成差异化竞争,**将AI竞争从模型性能比拼转向生态规则制定,构建"智能体社交网络"来控制生态而非单体模型;其次是复制Android的成功,当年Google用开源的Android系统对抗苹果的iOS,现在用开源的A2A对抗OpenAI的封闭生态;最后是数据与流量入口,当所有智能体都通过A2A协议交流,Google就能洞察这些交互,成为智能体世界的流量中心。

这次Google的A2A协议获得了Langchain、Cohere、Intuit、ServiceNow等在内的50多家科技公司的参与和支持。

图片

简单来说,这是一次从"单体AI"向"AI网络"的战略转移。Google不再与OpenAI比拼谁的单个模型更强, 而是要建立一个由无数智能体组成的网络,其中Google处于核心地位。

Anthropic推MCP同样深思熟虑:一是企业级市场布局,MCP的设计天然适合企业IT系统集成,Anthropic意在争夺利润丰厚的企业市场;二是弥补工具使用短板,相比GPT,Claude在工具调用方面有短板,MCP可以快速补足这一弱点;三是建立技术护城河,成为企业接入AI的标准接口,让客户对Anthropic形成依赖。

可以看出,MCP是Anthropic在企业市场的"敲门砖",通过解决企业最头疼的系统集成问题,赢得付费客户的青睐。

回顾历史,微软通过Windows API构建了PC时代的霸权;Google/Apple通过Android/iOS生态控制了移动互联网;以太坊通过智能合约标准主导了区块链世界。现在,Al Agent的标准之争,本质上就是在争夺下一代计算平台的控制权。A2A和MCP表面上是促进互操作性的开放协议,实则是巨头们在AI新大陆上插下的旗帜。在科技世界,谁率先制定了标准,谁就掌握了生态的控制权。

三. 未来如何?我们要怎么做?

这些技术协议看似遥远,实则将深刻改变我们未来的工作和生活方式

想象一下,如果你是一个招聘经理,当你对你的AI Agent助手说:“帮我找一下符合职位描述、工作地点和技能要求的候选人”,它可以通过A2A协议和其他Agent组队,帮你精准筛选出最合适的候选人,然后进一步安排面试。面试完,另一个Agent还可以帮忙继续做候选人背景的调查。

图片

又或者,在协议和技术成熟之后,当你对你的AI助手说:'帮我安排下周去上海的出差",它能够通过A2A协议联系航空公司和酒店的Agent,通过MCP协议查询你的日历,最终把一切都安排好并同步到你的日历,整个过程无需你手动操作任何应用,就像有一个真实的助理在为你工作。

对于内容创作者来说,你的写作Agent可以通过A2A协议调用专业的研究Agent收集资料,通过MCP协议访问你的个人知识库,通过A2A协议请设计Agent生成配图,最后通过MCP将内容发布到你的博客平台。无需在多个工具间切换,整个工作流程一气呵成。

面对这场智能体革命,不同人群该如何抓住机会?对普通用户来说,选择跨平台AI助手、开始构建个人知识库、学习简单的Agent编排都很重要;对开发者来说,布局协议中间件、专注垂直领域Agent、学习 Agent编排开发将成为关键技能;对企业来说,试点内部Agent生态、评估协议兼容性、关注数据安全则是必不可少的。

不论哪种愿景胜出,这场协议之争都在重新定义AI与人类社会的交互方式。当年互联网协议TCP/IP统一后,催生了无数创新公司;移动互联网标准统一后,诞生了滴滴、美团等巨头。今天,AI协议的标准化同样预示着新一轮创新浪潮的到来。

而这一次,中国企业既要积极接轨国际标准,又要立足本土场景创新。因为标准之争的最终赢家,往往不是标准的发明者,而是最善于利用标准创造价值的实践者。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值