- 博客(11)
- 收藏
- 关注
原创 git的基本使用
一般情况下,我们都是从远程的master或main分支克隆到本地master或main分支,开发时,一般是先切出一个新的分支,在新的分支上进行修改,确定修改无误后再合并到本地的master或main分支,然后提交到本地,再推送到远程分支。在修改项目代码之前,我们需要将远程分支上的内容更新到本地仓库,这样可以避免他人的修改内容与自己的修改内容之间产生冲突。
2024-07-29 20:39:44 131
原创 pandas中的索引与选择
看完上面的内容,有没有发现,其实上述讲到的方法可以简单的分为以下几类,只不过索引的选择会决定获取到的结果pandas数据选择总结方法概述使用 [pos/indexl]此方式不能同时进行行选加列选,当传入的是一个位置切片时,表示选择行,且选择行时必须传入一个切片,当传入的是索引时,表示选择列,此方式无法获取标量使用 df.loc[row, col]
2024-07-23 21:31:51 2161
原创 pandas查看数据信息
从csv或excel等格式文件中读取了数据到pandas的DataFrame中,但是却不知道读取的数据是怎样的,想知道读取的数据是什么形式、包含哪些信息、有哪些数据类型,怎么办?使用df.head()方法。
2024-07-23 15:27:11 436
原创 从形状或值创建numpy的ndarray
下方函数中dtype参数表示创建的数组的元素类型,order参数的可选值为{'C', 'F'},默认为'C',该参数表示内存中的多维数据是按行主序(C 风格)还是列主序(Fortran 风格)存储。like参数表示一个引用对象,用于创建非 NumPy 数组,如果传入的类数组支持 __array_function__ 协议,结果将由它定义,在这种情况下,它将确保创建一个与通过该参数传递的数组对象兼容的数组对象。返回一个新数组,该数组具有给定的形状和类型,并使用指定的fill_value值填充数组元素。
2024-07-19 15:58:36 172
原创 pandas中DataFrame对象的属性
index表示DataFrame对象的行标签,用于标识DataFrame对象的每一行。获取DataFrame对象中每一列的数据的类型,返回值是一个Series对象,该Series的索引为原DataFrame的columns属性,值为每一列的数据的数据类型,混合类型的列使用object dtype 保存。columns表示DataFrame对象的列标签,用于标识DataFrame中的每一列,常用于DataFrame对象列的索引和对齐,可以使用该属性修改DataFrame的columns属性值。
2024-07-17 16:28:46 465
原创 Pandas数据结构之DataFrame选择、删除、添加列
在pandas中可以使用类似于字典的方式来对DataFrame中的列对象进行选择、添加、删除。
2024-07-16 12:34:52 464
原创 Pandas数据结构之创建DataFrame
DataFrame 是一种二维标签数据结构,其中的列可以是不同的类型。可以把它想象成电子表格或 SQL 表,或者是一个包含一系列 Series 对象的 dict。一般来说,它是最常用的 pandas 对象。与 Series 一样,DataFrame 也接受多种不同类型的输入。
2024-07-16 10:42:20 1694
原创 Pytorch实现遥感图像场景分类
遥感图像的场景分类属于一个多分类问题,毕竟不可能只有两个场景,数据集可以直接获取,pytorch提供了一些图像分类相关的模型如ResNet、VGG、Inception等网络,可以直接获取,当然也可以自己设计,此处我们直接使用ResNet50版本,需要注意的是,需要针对使用的数据集的具体分类数调整ResNet50的num_classes参数,即控制输出通道数以匹配自己使用的数据集的类别数。
2024-07-15 12:00:03 947
原创 Pandas数据结构之Series对象
Series是一个一维标签数组(也就是带索引的数组,轴标签统称为索引index),可以存放任何数据类型如:整形、字符串、浮点数、python对象等。Series的基本创建方法为),如果没有指定index,则默认为[0,1,2,...,len(data) - 1]data。
2024-07-14 22:04:50 244
原创 PyTorch以及Numpy中的广播机制
广播是PyTorch以及Numpy中的一个重要机制,很多人在学习PyTorch以及Numpy的时候往往对广播机制一掠而过,最终只是略懂皮毛,然而在实际中,如果不能全面的了解广播机制,可能很多可以并行执行的操作自己在实现时往往叠加了多层for循环,看别人的源码往往百思不得其解,本人也受过对广播机制一知半解的毒害。本文的目的在于全面的掌握广播机制到底如何执行,至于广播机制是什么之类的概念则不涉及。
2024-07-14 16:58:56 299
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人