关注+星标,每天学习Python新技能
庆余年微博传播分析
《庆余年》在微博上一直霸占热搜榜,去微博看一下大家都在讨论啥:
一条条看显然不符合数据分析师身份。
于是用Python爬取微博超话页面,然后找到相关人员,分别去爬取相关人员的微博评论,看看大家都在讨论啥。
import argparse
parser = argparse.ArgumentParser(description="weibo comments spider")
parser.add\_argument('-u', dest='username', help\='weibo username', default\='') #输入你的用户名
parser.add\_argument('-p', dest='password', help\='weibo password', default\='') #输入你的微博密码
parser.add\_argument('-m', dest='max\_page', help\='max number of comment pages to crawl(number<int> larger than 0 or all)', default\=) #设定你需要爬取的评论页数
parser.add\_argument('-l', dest='link', help\='weibo comment link', default\='') #输入你需要爬取的微博链接
parser.add\_argument('-t', dest='url\_type', help\='weibo comment link type(pc or phone)', default\='pc')
args = parser.parse\_args()
wb = weibo()
username = args.username
password = args.password
try:
max\_page = int(float(args.max\_page))
except:
pass
url = args.link
url\_type = args.url\_type
if not username or not password or not max\_page or not url or not url\_type:
raise ValueError('argument error')
wb.login(username, password)
wb.getComments(url, url\_type, max\_page)
利用Python生成词云图
爬取到微博评论后,老规矩,Python词云展示一下,不同主角的评论内容差别还是挺大的。
张若昀:
李沁:
从目前大家的评论来看,情绪比较正向,对《庆余年》的评价较高。
这条定档微博发布时间是11月26号,经过一段时间已经有比较好的传播,其中有几个关键节点进一步引爆话题。
继续看一下转发该微博的用户分析:
整体看下来,庆余年官微的这条微博90%都是普通用户的转发,这部剧转发层级达到5层,传播范围广,在微博上的讨论女性居多(占比89%),大部分集中在一二线城市。
原著人物关系图谱
首先我需要从原著里洗出人物名,尝试用jieba分词库来清洗:
import jieba
test= 'temp.txt' #设置要分析的文本路径
text = open(test, 'r', 'utf-8')
seg\_list = jieba.cut(text, cut\_all=True, HMM=False)
print("Full Mode: " + "/ ".join(seg\_list)) # 全模式
发现并不能很好的切分出所有人名,最简单的方法是直接准备好人物名称和他们的别名,这样就能准确定位到人物关系。
存储好人物表,以及他们对应的别名(建立成字典)
def synonymous\_names(synonymous\_dict\_path):
with codecs.open(synonymous\_dict\_path, 'r', 'utf-8') as f:
lines = f.read().split('\\n')
for l in lines:
synonymous\_dict\[l.split(' ')\[0\]\] = l.split(' ')\[1\]
return synonymous\_dict
接下来直接清理文本数据:
def clean\_text(text):
new\_text \= \[\]
text\_comment = \[\]
with open(text, encoding='gb18030') as f:
para \= f.read().split('\\r\\n')
para = para\[0\].split('\\u3000')
for i in range(len(para)):
if para\[i\] !\= '':
new\_text.append(para\[i\])
for i in range(len(new\_text)):
new\_text\[i\] \= new\_text\[i\].replace('\\n', '')
new\_text\[i\] = new\_text\[i\].replace(' ', '')
text\_comment.append(new\_text\[i\])
return text\_comment
我们需要进一步统计人物出现次数,以及不同人物间的共现次数:
text\_node = \[\]
for name, times in person\_counter.items():
text\_node.append(\[\])
text\_node\[\-1\].append(name)
text\_node\[\-1\].append(name)
text\_node\[\-1\].append(str(times))
node\_data = DataFrame(text\_node, columns=\['Id', 'Label', 'Weight'\])
node\_data.to\_csv('node.csv', encoding='gbk')
结果样例如下:
不愧是主角,范闲出现的次数超过了其他人物出现次数的总和,基本每个人都与主角直接或间接地产生影响。
同理可以得到不同人物的边,具体代码参考源文件。
接下来需要做的就是利用Gephi绘制人物关系图谱:
运行结果:
参考文献:Ren, Donghao, Xin Zhang, Zhenhuang Wang, Jing Li, and Xiaoru Yuan. “WeiboEvents: A Crowd Sourcing Weibo Visual Analytic System.” In Pacific Visualization Symposium (PacificVis) Notes, 2014 IEEE, pp. 330-334. IEEE, 2014.