一、Hive简介
Apache Hive是一个建立在Hadoop之上的数据仓库基础设施,它提供了类SQL查询语言HiveQL(HQL)来查询和管理存储在Hadoop集群中的大数据。Hive允许不熟悉Java MapReduce程序员也能编写大数据的复杂查询,并且这些查询可以转换为在Hadoop上执行的MapReduce任务。Hive可以处理结构化和非结构化的数据,并且支持各种文件格式,如TextFile、SequenceFile、Parquet等。
二、Hive环境配置
Hive环境配置主要包括安装Hive、配置Hive环境变量、设置Hive的元数据存储(如MySQL)等。以下是一个简化的Hive环境配置步骤:
- 下载并解压Hive安装包。
- 配置Hive环境变量,如
HIVE_HOME
和PATH
。 - 配置Hive的
hive-site.xml
文件,指定元数据存储位置等。
三、Hive产生背景与架构设计
Hive的产生背景是为了解决Hadoop生态系统中MapReduce编程的复杂性,提供一个更简单的数据查询方式。Hive的架构设计采用了客户端-服务器模式,包括用户接口层、元数据存储层、执行引擎层和Hadoop数据存储层。
四、Hive存储模型与数据类型
Hive支持行式存储和列式存储(如Parquet),并提供了丰富的数据类型,包括基本数据类型(如INT、STRING)、复杂数据类型(如ARRAY、MAP、STRUCT)等。
五、Hive表库操作
Hive表库操作主要包括创建数据库、切换数据库、删除数据库、创建表、删除表等。以下是一个创建表的示例:
CREATE TABLE IF NOT EXISTS employees ( |
|
id INT, |
|
name STRING, |
|
salary FLOAT, |
|
subordinates ARRAY<STRING>, |
|
address STRUCT<street:STRING, city:STRING, state:STRING, zip:INT> |
|
) |
|
ROW FORMAT DELIMITED |
|
FIELDS TERMINATED BY '\t' |
|
STORED AS TEXTFILE; |
六、Hive内部表与外部表
Hive内部表(管理表)由Hive完全管理,数据存储在Hive的默认数据仓库目录下。删除内部表时,Hive会同时删除表对应的数据。而外部表的数据存储在用户指定的位置,Hive仅维护元数据。以下是一个创建外部表的示例&#x