由于移动应用技术的持续性的快速发展,现实生活中人们大多数都是通过移动手机、电脑等智能设备来完成生活中的事务。因此,许多的人工传统行业也开始与互联网结合,不再一味的依靠人工劳动,努力打造半自动数字化甚至是全自动数字化模式。于是,以大数据的农产品价格分析预测系统作为例子,利用Python爬虫技术获取最高交易量日排行榜、7天价格预测走势图的数据,并对这些数据进行处理, 然后对这些数据进行可视化分析和预测。给人们提供一些客观的数据,方便他们参考,这给今后的大数据系统维护带来了便利,同时也为将来开发类似的大数据系统提供了参考和帮助。
Python爬虫技术目前来说,是比较常用的从网页获取数据的方法之一。而 Python语言也是比较受欢迎,尤其是在人工智能和大数据领域有着广泛的应用。特别是 Python的第三方库,让人们能够通过简单的代码解决更多的难题。同时对数据的处理也比较方便快捷。
其中主要通过 Requests,Beautifulsoup 进行网页分析和数据爬取, 然后再使用 Numpy,Matplotlib,Pandas 对所爬取的数据进行可视化分析。还通过聚类算法,依据所爬取的数据进行一个总结,使我们了解大数据的农产品价格分析预测系统的基本特征和分布情况。帮助那些需要的人做出决策。
大数据的农产品价格分析预测系统是基于Web服务模式,采用面向对象的程序设计方法,实现一个具有通用功能的模型结构。使用该系统的条件仅是需要具备连上互联网的能力,并能够通过移动设备登录系统。本系统分为前端和后端,具体实现的系统功能结构图如图4.1所示:
图4.1 系统功能结构图
大数据的农产品价格分析预测系统看板展示
对大数据的农产品价格分析预测系统获取之后,开始对类别统计、Access From、最高交易量日排行榜、7天价格预测走势图,这些数据进行可视化分析,如图5.2所示:
图5.2 大数据的农产品价格分析预测系统界面图