随着互联网技术的飞速发展和智能手机的普及,电子商务行业在中国得到了迅猛发展。电商平台的发展不仅改变了人们的购物方式,也产生了大量的数据。本文主要研究电商手机网购数据分析系统,旨在帮助商家更好地了解消费者行为,优化商品推荐和营销策略,提高销售额和用户满意度。系统主要使用大数据、Spark技术、机器学习、Django框架进行设计与开发,采用大数据技术,对电商平台的用户行为数据进行采集、存储和分析,构建了电商手机网购数据分析系统。该系统包括数据预处理、特征工程、模型构建和模型评估等模块。使用决策树、随机森林和支持向量机等算法构建了用户行为预测模型,并对模型进行了评估和优化。实验结果表明,该系统能够有效预测用户购买行为,为商家提供有价值的参考信息,实现精准营销,提高用户满意度和销售额。
本文的主要创新点在于采用大数据技术对电商平台的用户行为数据进行采集和分析,该研究对于电商企业具有重要的实践意义,可以帮助商家更好地了解消费者需求和行为,优化商品推荐和营销策略,提高销售额和用户满意度。
系统概述
作为大数据分析系统,数据采集、数据处理、数据分析和数据可视化是电商手机网购数据分析系统具备的基本素质。除此之外,本系统在用户交互方面做到了傻瓜式一键交互,按下按键,功能完成。数据抓取、数据存储、数据导入、数据清洗、数据预处理、数据分析、数据挖掘和数据可视化等种种功能都不在话下,通过GUI图形操作界面摆脱了繁琐的实现过程。
系统功能结构如图3-1所示。
图3-1 系统功能结构
数据可视化面板界面如下图所示。如图5-9所示。