随着信息技术的快速发展,大数据时代已经来临。在金融领域,大数据技术已经广泛应用于股票市场分析、投资决策、风险管理等方面。特别是在股票市场分析中,通过对历史股票数据、财务报表数据、新闻资讯等多源数据的挖掘与分析,可以有效提高股票推荐的准确性和实时性。
Hadoop是一个开源的大数据处理框架,能够高效地处理海量数据。在股票推荐分析系统中,Hadoop可以用来存储和处理大量的股票数据,从而为投资者提供有价值的投资建议。考虑到股票价格的可视化分析数据网站的更新频率和反爬策略,需要设计合理的抓取策略,确保数据的实时性和完整性,利用Python对原始数据进行清洗和预处理,确保数据的准确性和一致性。在数据预处理完成后,本研究采用Spark作为大数据处理框架,进行深入的数据分析。通过Spark的SQL模块,对数据进行聚合、筛选和连接操作,以提取有价值的信息。同时,利用Hive构建数据仓库,对海量数据进行高效存储和查询。为了更好地展示分析结果,本研究采用Vue.js框架构建了一个可视化界面。
根据以上的功能需求情况,整体的功能模块包括有前台vue项目模块,后台Hive