学术论文的AIGC率:为何重要,如何降低?

告诉大家一个非常残忍的答案,以后所有论文都会被查ai的

在考虑使用AI撰写学术论文的便捷性时,你可能会问:学术界难道没有预见到这种行为吗?答案是肯定的。学术界不仅关注传统的抄袭问题,还针对AI生成内容(AIGC)增加了一项名为“AIGC检测”的指标。这一检测的目的,正是为了识别和惩处那些不假思索、完全依赖AI自动生成论文的行为。

用GPT写论文虽然重复率基本不用担心,但是AIGC疑似度是无法保证的呀!所以我们一定要做好措施来保证自己的论文通过AIGC检测,这里推荐两种方法!

第一种方法是自己使用人类语言修改论文内容来降低AI痕迹,比如删除逻辑性较强的词汇,增加富有情感色彩的词汇,比如重新组织语言复述过于规整的句子……这种方法过于耗费时间且低效,并不一定有用,所以都来试试第二种方法,保证有效!

那就是使用AI产品降低AI痕迹!!!!

很多人了解到了用AI写论文,却鲜少有人知道还可以用AI内容检测器降低论文AI痕迹,如果你知道了,那你已经打败了99%的同学。这种aigc降重技术并不仅仅是简单的降重或润色,背后的算法是完全不同的,市面上能有效执行此功能的产品寥寥无几,这里推荐一款专门降低论文AI痕迹的产品,非常适合希望提升论文原创性的学者。链接如下↓

https://ibiling.cn/paper-pass?from=csdnpss09

b9b47a05c85d809647db9d8a9904ca96.jpeg

我亲自为大家进行了深度试用,效果确实令人惊艳,因此才敢放心推荐。经过试用,AIGC疑似度成功降低了约50%,也是牛牛的很安心!而且它价格巨便宜,2.5元/千字,改一整份毕业论文也才二三十块钱,这个价格还不冲等什么!!!

27d884b6216c8f20c49ebd7ffc51409f.jpeg

首先能上传word/PDF等文档就很nice,意味着不用自己一段一段复制粘贴。如果你是部分段落要进行降痕,也可以选择粘贴文本,此操作很简单,一点不复杂。

4217de060256d3fee308c130678d9c9c.jpeg

我上传了之后发现,它除了英文摘要和致谢暂时不能修改之外,其他论文内容都修改了!下面我将放出修改前后的片段进行对比!

以下是修改前一片红,简直惨不忍睹啊……

fba60bfee685a26f59abad7e04020216.jpeg

修改之前句式和风格一致性,缺乏自然语言的多样性和随机性。例如,多处出现重复的词汇和短语,如“我们将...”。细看内容,就是在泛泛而谈,没有具体的数据、实例或深入的分析来支持其论点。这种缺乏具体细节和深度的情况也符合AI生成文本的特点。

再来看看修改后的,AIGC疑似度大幅度降低语言表达丰富了,不再拗口难读,甚至带上了一些情感色彩,虽然内容修改的还不够深入,但是AIGC疑似度就是神奇地消失了!

1af7c4d2b8f89a5cd7a1c37ce2611020.jpeg

所以对ai检测心存顾虑的同学不妨体验一下咯~学会使用AI能帮助我们太多事情了,AI可能并不会淘汰人,但能淘汰不会使用AI的人!现在就开始,让AI成为你工作和学习的助力,保持在竞争中的优势!

### 如何有效降低 Turnitin 中的 AIGC 使用比例及文本重复 Turnitin 是一种广泛使用的学术诚信检测工具,能够识别文本中的抄袭行为以及 AI 工具生成的内容。为了有效降低 AIGC 使用比例和文本重复,可以采取以下策略: #### 方法一:人工润色与句式调整 通过对论文进行人工润色并调整句式结构,可以使内容更贴近人类自然表达方式[^1]。这种方法不仅有助于减少 AI 特征,还可以提高文章的语言流畅度。 #### 方法二:利用同义词替换与语序重组 适当使用同义词替代原词语,并重新排列句子成分,从而改变原始表述形式而不影响核心含义[^3]。需要注意的是,在操作过程中要保持逻辑清晰,避免因过度修改而引发新的问题。 #### 方法三:借助高级AI工具优化内容 某些专门设计用于应对AIGC检测的技术方案提供了高效的解决方案。例如,有实验表明特定软件能够在两分钟内显著改善文档通过——从初始较高的百分比降至较低水平的同时维持良好格式布局(如保留公式编号、图表位置)[^4]。不过要注意选择信誉良好的产品以免造成额外风险。 #### 方法四:分阶段处理不同类型的错误指标 由于降低AIGC的操作可能无意间增加了其他方面的相似性指数,反之亦然;所以最好按照优先顺序先后解决这些问题:首先是针对机器学习模型特征做出相应修正直至达到可接受范围之后再去考虑传统意义上的复制粘贴类违规现象. #### 示例代码展示如何自动化部分流程 下面给出一段简单的Python脚本作为例子来说明怎样批量执行基本文字变换任务: ```python import random def synonym_replacer(text): synonyms = { 'efficient': ['productive', 'effective'], 'methods': ['approaches', 'techniques'] } words = text.split() replaced_words = [ synonyms[word][random.randint(0,len(synonyms[word])-1)] if word in synonyms else word for word in words ] return ' '.join(replaced_words) original_sentence = "These methods are very efficient." modified_sentence = synonym_replacer(original_sentence) print(modified_sentence) ``` 此函数定义了一个小型字典存储了一些常见单词及其近义词列表;接着它会随机挑选其中一个备选项代替原文出现的位置形成新版本字符串输出给用户查看效果演示而已实际应用当中还需要更加复杂的算法才能满足需求标准. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值