自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 pycharm的详细安装教程

PyCharm详细安装教程

2025-04-24 23:26:11 195

原创 基于YOLOv8的高空无人机小目标检测系统(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型

随着深度学习技术的不断进步,尤其是YOLOv8等目标检测算法的提出,无人机在高空环境中的目标检测能力得到显著提升,这将进一步推动无人机在多个领域的广泛应用。随着YOLOv8等深度学习算法的优化,目标检测不仅能提高精度,还能在保证实时性的同时,减少计算资源的消耗,适应高空环境下对数据处理的实时性需求。开发的,提供友好的操作体验。中的P代表的是precision(精准率),R代表的是recall(召回率),其代表的是精准率与召回率的关系,一般情况下,将recall设置为横坐标,precision设置为纵坐标。

2025-01-12 19:42:47 3233 4

原创 YOLOv11超详细环境搭建以及模型训练(GPU版本)

100多种【基于YOLOv8/v10/v11的目标检测系统】目录(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)YOLOv5/8/10/11改进目录。

2024-10-31 09:00:00 31503 31

原创 目标检测系统中需要【重新训练模型】说明

打开"ultralytics\cfg\datasets\SODA10M.yaml"文件。将SODA10M.yaml的第一行数据集路径修改为自己数据集路径。以【基于YOLOv8的车辆行人目标检测系统】训练为例进行说明。训练模型的权重保存路径在"runs\detect\train\weights"目录下。给出的项目中已包含训练好的模型以及训练的结果,可直接使用。(3)运行main_model_train.py程序。(1)如果环境还没有搭建好的,首先要搭建训练环境。(4)训练模型保存路径。

2024-10-13 23:49:20 921

原创 目标检测系统操作说明【用户使用指南】(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)

方法一:如果想更换检测界面的图标,可以打开"system_utils\icons"目录下,找到对应图标的图片文件,用自己图片的替换即可(注意图片名要一样)方法二:打开"system_utils\style"目录下的两个.yaml文件,找到当前图标路径,替换为自己的图标路径。

2024-10-13 23:43:38 2007 4

原创 如果你的YOLO环境已经配置好了,如何打开项目文件

2.使用 pip 命令安装所需的依赖,可以通过requirements.txt文件进行安装。请务必按照 requirements.txt 中指定的版本进行安装,否则可能会出现依赖不兼容的问题,导致错误。1.首先将【目标检测系统源码】下载完成之后,解压到某个路径下(可以解压在D盘或者F盘都可)。然后使用Pycharm打开这个项目文件。

2024-10-13 23:28:16 521

原创 目标检测系统【环境搭建过程】(GPU版本)

右键点击【我的电脑】(此电脑)--【属性】--点击【高级系统设置】--【高级】--【环境变量】-找到系统变量下的【Path】--右侧点击【新建】,按照我标红框的进行添加即可。点击【File】-->【setting】-->【Project】-->【Python Interpreter】-->【Add Interpreter】-->【Add Local Interpreter】方法二:【鼠标右键桌面】--【显示更多选项】--【NVIDIA控制面板】--在控制面板的左下角点击【系统信息】--选择【组件】

2024-10-13 23:26:12 1565

原创 目标检测系统【环境详细配置过程】(CPU版本)

(如果你使用的是笔记本电脑,没有比较好的GPU,可以配置CPU运行环境)

2024-10-13 23:15:35 1397

原创 YOLOv5超详细环境搭建以及模型训练(GPU版本)

右键点击【我的电脑】(此电脑)--【属性】--点击【高级系统设置】--【高级】--【环境变量】-找到系统变量下的【Path】--右侧点击【新建】,按照我标红框的进行添加即可。点击【File】-->【setting】-->【Project】-->【Python Interpreter】-->【Add Interpreter】-->【Add Local Interpreter】方法二:【鼠标右键桌面】--【显示更多选项】--【NVIDIA控制面板】--在控制面板的左下角点击【系统信息】--选择【组件】

2024-08-24 10:37:39 6934 7

原创 YOLOv10超详细环境搭建以及模型训练(GPU版本)

右键点击【我的电脑】(此电脑)--【属性】--点击【高级系统设置】--【高级】--【环境变量】-找到系统变量下的【Path】--右侧点击【新建】,按照我标红框的进行添加即可。点击【File】-->【setting】-->【Project】-->【Python Interpreter】-->【Add Interpreter】-->【Add Local Interpreter】方法二:【鼠标右键桌面】--【显示更多选项】--【NVIDIA控制面板】--在控制面板的左下角点击【系统信息】--选择【组件】

2024-08-23 09:00:00 22699 33

原创 YOLOv8超详细环境搭建以及模型训练(GPU版本)

YOLOv8超详细环境搭建,以及以NEU-DET数据集为为例进行模型的训练

2024-08-21 16:54:12 20544 23

原创 【BUG】使用Anaconda3创建虚拟环境时,总是安装到C盘全局默认路径,而不是安装到自定义的Anaconda的envs目录下的解决方法

使用Anaconda3创建虚拟环境时,总是安装到C盘全局默认路径,而不是安装到自定义的Anaconda的envs目录下的解决方法

2024-08-21 16:10:26 2771 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除