论文速读|Beyond Logit Lens: Contextual Embeddings for Robust Hallucination Detection & Grounding in VLMs
论文信息:
简介:
本文讨论的背景是大型多模态模型(Large Multimodal Models, LMMs)的快速发展,这些模型通过结合大型语言模型(Large Language Models, LLMs)的语言能力和特定模态的编码器,显著推进了多模态理解。然而,这些模型存在“幻觉”问题,即产生过于自信的错误答案,这限制了它们的可靠性和应用。传统的检测和减轻幻觉的方法通常涉及昂贵的训练或依赖外部模型,而最近利用内部模型特征的方法显示出了希望。本文的动机在于提高LMMs的可靠性和可解释性,使其在实际部署中更加实用。对数镜头方法虽然在视觉-语言模型(VLMs)中识别和减轻对象幻觉方面有效,但在处理更复杂的视觉幻觉场景时ÿ