NLP论文速读(ACL 2024)|在保证LLM生成准确度的情况下提升多样性

论文速读|Increasing Diversity While Maintaining Accuracy: Text Data Generation with Large Language Models and Human Interventions

论文信息:

简介:

      本文探讨了如何利用大型语言模型(LLMs)生成用于训练和评估其他模型的文本数据。随着自然语言处理(NLP)技术的发展,训练自定义的自然语言分类模型变得越来越容易。然而,数据收集仍然是模型构建中成本较高的部分。现有的开源数据集可能无法匹配模型构建者的特定领域分布或不包含所需的标签,这导致模型构建者需要收集和标注新的数据,这可能非常耗时且昂贵。近年来,生成型大型语言模型(如GPT-3)的发展为创建分类模型的训练数据提供了新方法。模型构建

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值