自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(211)
  • 收藏
  • 关注

原创 2026年AI大横评:ChatGPT、Gemini、Grok、DeepSeek结果让人意外

四大AI(ChatGPT、Gemini、Grok、DeepSeek)在九大真实场景下的付费版本测试结果显示: Gemini综合表现最佳(46分),在事实核查、视频生成和语音对话中优势明显;**ChatGPT(39分)**在问题解决和图像生成上更优;**Grok(35分)**擅长深度研究;**DeepSeek(17分)**因功能局限垫底。测试暴露出AI在视觉搜索(如找威利)、细节处理(数手指)和硬件数据准确性上的普遍缺陷。 核心结论:没有全能AI,需根据场景选择——日常文本选ChatGPT,事实核查用Gemi

2026-01-05 16:40:48 538

原创 大模型幻觉问题的破解之道:从面试到工程实践的完整方法论

《大模型幻觉问题的破解之道》摘要:本文系统探讨了大模型生成内容中存在的幻觉问题及其解决方案。首先将幻觉分为事实性、逻辑性和指令跟随偏差三类,分析其本质原因。随后提出三大核心解决方案:知识检索增强(RAG)、模型生成约束和后处理验证,结合金融、医疗等领域的实际案例说明实施要点与权衡考量。文章强调量化评估的重要性,并展望多模态检测、强化学习等前沿方向。最后建议求职者准备具体案例、展现系统思维,指出解决幻觉问题需要技术能力与业务敏感性的结合,体现AI工程师的综合素养。全文提供从技术原理到工程实践的完整方法论,助力

2026-01-05 16:38:37 397

原创 AI架构的静默革命:DeepSeek如何用数学优雅破解十年困局

DeepSeek通过数学创新突破AI架构瓶颈,提出"流形约束超连接"(mHC)方案,成功解决了传统残差连接限制信息流动的问题。该技术用严格的数学约束确保多条信息流和谐共存,在仅增加6.7%训练成本的情况下,使模型推理能力提升400%。这项突破标志着AI发展从单纯堆叠资源转向优化架构效率的新阶段,挑战了被奉为圭臬十年的残差连接设计,为算力受限场景提供了更优解决方案。DeepSeek选择公开发表这一创新,展现了通过持续基础研究建立技术壁垒的战略思维。

2026-01-04 13:31:26 989

原创 DeepSeek再抛重磅炸弹:颠覆10年AI 架构,不仅是卷模型,更在改地基!

**摘要:**DeepSeek最新论文挑战AI基础架构,提出MHC(流形约束超连接)技术,突破传统残差连接的单行道限制。该技术通过多流并行传输和严格约束规则,显著提升模型能力而仅增加少量训练成本。实测显示,MHC使27B参数模型在数学推理、逻辑推理等任务上提升显著(如GSM8K从46.7分升至53.8分)。这一创新不仅突破内存带宽瓶颈,更展现了中国AI实验室的技术自信。DeepSeek再次证明:算法创新可打破硬件壁垒,回归基础架构优化或是通往AGI的关键路径。

2026-01-03 15:20:01 682

原创 2025 AI编年史:那些改变世界的365天

2025 AI技术革命全景回顾 2025年见证了AI领域的革命性突破,中国DeepSeek R1模型以开源方式撼动硅谷,终结了"算力决定论";开源与闭源大战重塑行业格局,大模型进入"白菜价时代";视频生成技术实现质变,从无声"哑剧"升级为完整影视作品;硬件领域则上演了算力竞赛与生态博弈。这一年AI从实验室走向日常生活,但也面临技术主权、开源商业化平衡等深层挑战。2025年的AI发展证明:创新不再依赖参数堆砌,而是转向架构优化与场景应用,为2026年

2026-01-03 14:24:40 710

原创 30分钟让AI学会“说人话“:保姆级模型微调教程,无需写代码

想象一下这个场景:你花大价钱接入了最新的大模型API,想让它帮公司客服回答用户问题。结果用户问"咱们家的XR-2000支持哪些协议",AI一脸懵逼地回答"我不太清楚XR-2000的具体规格……"又或者,你是个中医诊所老板,想让AI帮患者做初步问诊。结果AI用大白话说"你可能有点发炎",完全不符合中医的话语体系,患者根本不信任。怎么办?今天,我就带你用30分钟,把一个通用AI模型,训练成"会说你家行话"的专属助手——而且,。

2025-12-31 16:29:38 709

原创 AI自动画界面?Google这个开源神器让前端工程师失业了

Google开源框架A2UI让AI具备自动生成交互界面的能力,仅需自然语言描述即可生成包含表单、图表等组件的完整UI。该系统通过AGUI管理AI通信,A2UI规范UI生成标准,最终输出安全的JSON蓝图,可由多种渲染器实现跨平台展示。案例显示30秒即可搭建餐厅查找应用,支持动态更新。该技术将大幅提升原型开发效率,降低AI应用门槛,使开发者更专注于业务创新而非重复编码。目前项目已开源,支持Web、移动等多端适配。

2025-12-31 16:20:00 920

原创 搭建AI系统就像盖房子:从地基到屋顶的完整技术栈指南

摘要:构建AI系统如同建造房屋,需要完整的五层技术栈:1)硬件基础设施(本地/云端/本地设备部署);2)模型选择(开源/专有、大小模型、通用/专业);3)数据层(RAG技术实现知识更新);4)编排层(多步骤智能工作流);5)应用层(用户体验设计)。文章以药物研发AI助手为例,强调系统性能由最短板决定,需平衡质量、速度、成本和安全四大指标。理解完整技术栈是构建实用AI系统的关键,各层协同才能打造真正可用的AI解决方案。

2025-12-30 15:13:47 799

原创 Google花9小时教的提示工程,我用一篇文章讲透了

AI Agent正在实现从"会说话"到"会干活"的革命性跨越。相比传统LLM只能提供建议,AI Agent通过记忆功能、API调用和目标驱动机制,能够自主完成复杂任务。MCP协议作为"万能插头",解决了不同API对接难题,使AI Agent能即插即用各种服务。Agent间协作模式进一步扩展了能力边界,让专业AI各司其职。从软件开发到数据分析,AI Agent已从"顾问"进化为"同事",正在重塑工作流程。这场静

2025-12-30 15:05:24 777

原创 AI终于学会“动手“了:一文搞懂AI Agent和MCP的魔法

AI Agent正在实现从"会说话"到"会干活"的革命性跨越。相比传统LLM只能提供建议,AI Agent通过记忆功能、API调用和目标驱动机制,能够自主完成复杂任务。MCP协议作为"万能插头",解决了不同API对接难题,使AI Agent能即插即用各种服务。Agent间协作模式进一步扩展了能力边界,让专业AI各司其职。从软件开发到数据分析,AI Agent已从"顾问"进化为"同事",正在重塑工作流程。这场静

2025-12-26 13:39:42 958

原创 2025年改变AI开发的6个MCP神器

MCP协议正在重塑AI开发范式,6个实用MCP工具带来革命性改变:Context 7实时更新文档数据,Docker MCP动态加载工具避免信息过载,Shadcn MCP精准调用UI组件,Google Cloud MCP提供企业级云服务接口,Notion/Supabase MCP实现全栈工作流无缝衔接。这些工具消除了开发中的上下文切换,让AI从代码助手进化为开发伙伴。MCP生态的繁荣标志着编程方式正在被重新定义,开发者需尽快适应这一趋势。

2025-12-25 13:51:44 826

原创 快手直播间大规模异常事件技术拆解:这不是入侵,是一场精心策划的攻击战

快手近期遭遇大规模直播间异常事件,黑客通过虚拟手机号、盗用身份信息和AI换脸技术批量注册账号,并利用DDOS攻击瘫痪举报系统,实现违规内容长时间留存。事件暴露了平台防护体系漏洞,虽然AI实时审核等技术解决方案可行,但高昂成本成为商业平台的安全平衡难题。该事件警示网络安全需要多方协作,技术发展与监管规范必须同步推进,普通用户也需增强数字身份保护意识。这场攻防战凸显了灰产技术升级与平台防护之间的持续博弈。

2025-12-23 13:38:25 1442

原创 AI终于学会“思考“了!揭秘超越ChatGPT的大型推理模型LRM

你有没有想过这样一个问题:AI真的会"思考"吗?当你问ChatGPT一个问题,它几乎是瞬间给出回答,行云流水,毫不犹豫。这看起来很智能,但仔细想想——它真的在思考吗?还是只是在凭借海量数据训练出的"直觉",快速拼凑出一个看起来合理的答案?如果把传统的大型语言模型(LLM)比作一个"快嘴"朋友——你问他什么,他立刻就能接话,但有时候会说错、会跑偏、会一本正经地胡说八道。

2025-12-21 15:38:04 317

原创 RAG vs. 微调:让AI变聪明的两种方式,该怎么选?

摘要:RAG与微调——让AI更智能的两种路径 本文探讨了提升大语言模型(LLM)能力的两种核心技术:检索增强生成(RAG)和微调(Fine-tuning)。RAG通过外部知识库为模型提供实时信息,适合动态数据场景(如新闻、产品文档),具有可追溯、低幻觉的优势,但依赖检索质量。微调则通过领域数据训练让模型内化专业知识,适用于需要深度领域认知的任务(如医疗、法律),响应更快但训练成本高。 关键选择维度包括:数据更新频率(动态选RAG)、专业深度(复杂选微调)、可追溯需求(合规选RAG)、成本资源(高频用微调)和

2025-12-19 13:32:23 661

原创 谷歌放大招!Gemini 3 Flash:地表最强“性价比之王“诞生

谷歌发布Gemini 3 Flash引发AI行业价格战:这款轻量级模型以GPT-5.2三折的价格、更快的响应速度和超越专业版的编码能力(78%基准得分)震撼市场。其每百万token仅0.5美元的定价策略,配合谷歌自研TPU和数据优势,直接挤压OpenAI和Anthropic的生存空间。该模型在科学知识(90%)、多模态理解(第一)等领域的优异表现,使其成为开发者新宠,预计将加速AI在编程、客服等场景的普及应用,标志着AI从"奢侈品"向"日用品"转型的关键转折。

2025-12-18 13:30:39 596

原创 10分钟看懂11种RAG策略:让你的AI Agent从“能搜“到“会搜“

本文介绍了11种优化RAG(检索增强生成)系统的策略,帮助提升AI搜索的准确性和效率。文章分为查询优化和数据准备两大部分:在查询优化方面,推荐重排序、智能体RAG、知识图谱等8种方法,可显著提高搜索精准度;在数据准备方面,提出上下文感知切分、分层RAG等3种文档处理技术。作者建议根据业务需求选择组合策略,从基础方案逐步升级,并强调RAG优化是一个持续迭代的过程。文中还分享了推荐的技术栈和实用工具,为构建高效RAG系统提供实践指导。

2025-12-17 13:50:20 932

原创 13分钟微调自己的AI模型?这个“作弊“方法,让小模型吊打大模型

摘要:本文介绍了AI模型微调技术如何让小型模型在特定领域超越大型通用模型。通过13分钟的微调流程,普通用户可以将基础模型训练成专业领域的"数字员工",如方言客服或精准推荐系统。文章阐述了微调的三大优势:建立商业护城河、突破审查限制、形成差异化竞争力,并提供了从选择基础模型到训练测试的完整实操指南。作者强调,在AI民主化时代,掌握微调技术已成为个人和企业的核心竞争力,这种"以小博大"的方法正在改变AI应用格局。

2025-12-16 13:48:28 1027

原创 三分钟看懂生成式AI、AI Agent和Agentic AI的本质区别

AI正在从"聊天机器人"升级为"全能助手"。文章揭示了AI的三层进化:生成式AI(如ChatGPT)擅长回答问题但缺乏实时性;AI Agent通过调用API能完成订票等具体任务;最高级的Agentic AI则能协调多个AI协作处理复杂流程(如旅行规划需同时处理签证和机票)。目前这类系统已应用于员工入职、智能客服等场景,通过框架实现自主决策和多步协作。AI正从信息生成工具发展为具备行动力和协调能力的智能助手,这种进化正在改变我们与技术的互动方式。

2025-12-15 14:27:28 901

原创 终于有人把大模型讲明白了:LLM 从入门到精通全解析

摘要:大型语言模型(LLM)的技术革命与挑战 大型语言模型(LLM)代表着从指令编程到自主学习的技术范式革命。通过Transformer架构和海量数据训练,LLM展现出惊人的语言理解和生成能力。从1966年的ELIZA到2023年的GPT-4,模型参数量实现了从百万到万亿的飞跃。LLM工作原理涉及分词、嵌入和Transformer三个核心步骤,通过自注意力机制理解语义关联。然而,训练LLM需要巨大算力和成本,只有科技巨头能负担。微调技术让普通用户也能定制AI。尽管LLM能力强大,但仍面临幻觉、偏见和知识时效

2025-12-14 15:28:23 702

原创 GPT-5.2震撼发布:效率提升390倍,AI进化不止步

更重要的是,对于企业用户来说,准确性带来的价值远超成本增加——一个算错的Cap Table、一次失败的客户服务、一段有bug的关键代码,任何一个都可能让你付出比API费用高得多的代价。当Box这样的企业服务公司发布自己的基准测试,展示GPT-5.2在文档提取、分析查询、多轮对话等场景中的速度和准确性双重提升时,我们看到的不只是一个"更强的模型",而是一个"更接近企业需求"的AI助手。从弹跳的小球,到复杂的财务模型,再到逼真的波浪模拟——GPT-5.2展示的,是AI从"会说话"到"真正能干活"的质变。

2025-12-13 16:23:19 881

原创 AI越狱简史:当“奶奶的睡前故事“击穿了最强安全防线

摘要: AI系统虽强大,却可能被普通人通过简单技巧绕过安全限制,这种现象称为“AI越狱”。例如,利用情感故事(如“奶奶的序列号”)或字符替换(如“b0mb”代替“bomb”),攻击者可诱导AI输出本应拒绝的内容。其原理在于AI依赖向量空间计算语义,微小的扰动即可导致理解偏差。多模态模型(语音、图像)同样脆弱,语速变化或图像噪声也能触发漏洞。尽管科技公司投入巨资防护,但攻防的不对称性使AI安全成为长期挑战。技术无罪,关键在于使用者如何承担伦理责任,避免滥用AI能力。 (150字)

2025-12-12 14:12:17 701

原创 一张日落照片,为什么传统数据库“看不懂“?揭秘向量数据库的魔力

摘要:传统数据库存储非结构化数据(如图片)时面临"语义鸿沟",只能基于标签检索而无法理解内容语义。向量数据库通过将数据转化为高维向量嵌入,在语义空间中建立相似性关联,实现基于内容的智能检索。这种技术采用近似最近邻算法快速搜索百万级向量,并广泛应用于RAG系统等AI场景,让机器真正"理解"非结构化数据,成为下一代智能应用的核心基础设施。

2025-12-09 14:28:07 645

原创 GitHub 一周热点榜

GitHub本周AI开源热点纷呈:图像生成模型Flex 2带来4款基础模型和1个VAE,支持多图参考和4K超清;腾讯推出轻量级视频生成框架Huiyuan Video 1.5,仅需14GB显存;智能体记忆系统Colony结合向量搜索和图数据库,提供长期记忆能力。此外还有Mac经典Launchpad的开源复刻工具LaunchNext、自托管笔记系统Note Discovery以及Nginx可视化神器Nginx Proxy Manager。最后还分享了美团大模型Agent实践手册和强化学习数学基础教程两份资料。

2025-12-08 14:57:55 946

原创 DeepSeek-V3.2:国产大模型的逆袭之战

国产大模型的逆袭之战:DeepSeek-V3.2挑战Gemini 3.0 12月20日Google发布Gemini 3.0 Pro后,国产大模型DeepSeek-V3.2在10天后以性能追平、价格仅为1/5、完全开源的优势强势回应。文章深度解析了这场技术对决: 技术突破:DeepSeek通过DSA稀疏注意力机制、可扩展GRPO训练框架和大规模合成Agent数据集三大创新,实现了性能与成本的平衡。 产品布局:推出V3.2通用模型和Special实验模型,分别针对生产环境和长思考链场景,编程和Agent能力已达

2025-12-02 14:11:01 684

原创 大模型生成文字的秘密

ChatGPT逐字生成回复的机制源于其核心工作原理。大模型通过向量化表示词语含义,采用"预测-采样"循环生成文本:先预测下一个词的概率分布,再从中随机采样。这种随机性赋予AI创造力,但也导致"幻觉"问题——一旦采样偏离正确路径,后续回答就会错误累积。调整参数如Temperature或采用Top-K采样可控制随机性程度。理解这一机制有助于我们认识AI的局限,设计更有效的提问方式,并理性看待其输出结果。AI的强大与脆弱都源于这种概率生成机制,这正是其迷人之处。

2025-12-01 14:17:17 946

原创 MCP与数据库的完美结合

《MCP+数据库:AI精准检索结构化数据的新方案》摘要: 针对传统RAG技术在知识检索中的四大痛点(检索精度不足、切片信息不全、时效性差、多轮查询弱),本文提出MCP+数据库的创新方案。MCP(模型上下文协议)作为AI工具调用的统一标准,通过标准化接口实现模型与结构化数据库的直接交互。以MongoDB为例,MCP支持模型直接执行SQL查询,在复杂查询、关联查询等场景下展现出远超RAG的精准度。实测显示,MCP方案能实现100%准确的多表关联查询,同时支持全局提示词优化以提升效率。目前MCP生态已涵盖主流AI

2025-11-30 21:58:57 981

原创 神经网络参数计算:小学生都能看懂的AI训练原理

摘要: 神经网络训练的核心原理是通过调整参数(W、B)使预测值接近真实值,使用损失函数(如均方误差)量化误差。简单情况下可直接求解(如线性回归),复杂网络则采用梯度下降法:随机初始化参数后,计算梯度并沿最陡方向逐步调整。神经网络的多层结构通过链式法则计算各层参数的梯度,这一反向传播过程从前向计算输出开始,反向推算各层梯度并更新参数,循环迭代直至损失最小化。整个过程就像从山顶一步步试探着走到最低点。

2025-11-29 14:27:23 569

原创 还在被AI新闻轰炸?这份“黑话词典“让你10分钟看懂大模型

读到这里,恭喜你已经掌握了AI圈的"黑话密码"。下次看到新闻里提到Token、Transformer、RLHF,你不会再一脸懵逼,而是能快速定位它在整个大模型框架中的位置。AI不是魔法,而是数学和工程的结晶大模型不是复读机,通过强化学习,它能涌现出真正的"智能"数据标注员很重要,他们的偏好塑造了AI的"人格"参数不是越多越好,架构和训练方法同样关键AI时代才刚刚开始,未来还会有更多激动人心的突破。但无论技术如何演进,保持好奇、持续学习,永远是我们拥抱变化的最佳姿势。

2025-11-27 14:09:30 571

原创 大模型瘦身术:量化与蒸馏技术全解析

本文探讨了大语言模型压缩的两大主流技术——量化和蒸馏。量化通过降低参数精度(如Float32转INT8)来减少存储空间和计算资源,保持性能的同时显著降低成本。蒸馏则通过让小模型模仿大模型的行为,在缩小规模的同时保留相似能力。文章比较了两者的优缺点:量化简单高效适合快速优化,蒸馏灵活适合大幅压缩或训练新模型。此外还提到剪枝等其他技术,但强调量化和蒸馏是目前最实用的方法。这些技术使大模型更易部署,推动AI应用的普及。开发者理解这些原理有助于优化模型部署和技术选型。

2025-11-26 13:58:51 377

原创 全量微调 vs LoRA:一篇文章彻底搞懂参数高效微调

发现模型在某方面能力不足通过训练更新模型参数得到能力提升的新模型微调本质:学习参数的改动量Δ全量微调:学习所有参数,资源消耗大LoRA灵感:参数改动存在冗余性微调悖论:我们希望改动有限,避免遗忘矩阵分解:用两个小矩阵近似大矩阵Rank参数:控制信息量和参数量的平衡资源节省:可降低90%以上的成本。

2025-11-25 15:06:33 421

原创 RAG、In-Context Learning、微调:如何选择最适合你的AI技术方案?

AI技术选型指南:RAG、In-Context Learning与Fine-tuning的对比与应用 本文深入分析了三种主流AI技术方案的差异与适用场景: RAG(检索增强生成):适用于模型能力足够但缺乏背景知识的场景,适合处理动态更新的外部数据,但需注意检索质量和知识库更新问题 In-Context Learning:通过Prompt示例激发模型能力,适合快速验证和小规模应用,但Prompt过长会导致成本飙升 Fine-tuning:通过训练将能力嵌入模型内部,长期使用成本最低但前期投入大 决策时应首先区

2025-11-24 15:23:21 987

原创 部署大模型需要多少GPU显存?一文教你精准计算

本文以Llama 70B模型为例,详细讲解了计算大模型推理所需GPU显存的方法。主要包含三部分:模型权重显存(140GB)、KV Cache显存(10并发32K上下文约800GB)和其他开销(约94GB),总需求约1TB。文章指出KV Cache是显存占用的主要部分,并提供了单用户和短上下文场景的优化建议,可将显存需求分别降至250GB和400GB。最后强调实际应用中可通过多种优化技术进一步降低显存需求。

2025-11-24 14:52:09 328

原创 Transformer多头自注意力机制深度解析:从原理到工程实践

本文全面解析了Transformer中的多头自注意力机制。从理论基础出发,阐述了其分头处理、线性变换等关键技术要点,并通过金融客服系统案例展示了8头注意力在意图识别中的实际应用效果(准确率提升16%)。文章重点分析了多头设计的核心价值:特征分工、并行计算优势及可解释性,同时提供了头数选择、长文本处理等工业实践建议。这种多专家协同的机制设计,为解决复杂语义理解问题提供了优雅而高效的方案,在面试和工程实践中都具有重要参考价值。

2025-11-23 23:42:48 819

原创 最新版LangChain 1.0快速入门介绍

LangChain 1.0重大更新概述 LangChain 1.0版本进行了全面升级,致力于简化开发流程并提升生产环境的稳定性。主要更新包括: 架构革新:以智能体(Agent)为核心,取代旧版的链式结构,通过统一的create_agent()API简化开发 底层优化:将LangGraph作为底层运行时,继承其状态管理、持久化等生产级能力 关键新特性: 引入中间件机制,支持全流程干预 标准化消息格式(HumanMessage等)提升兼容性 开发体验提升:整合LangGraph Studio等工具链,提供可视化

2025-11-14 19:51:47 984

原创 Prompt Engineering 和微调,到底该选谁?

摘要:本文探讨了大模型应用中的关键决策问题——何时选择Prompt工程,何时需要微调。研究表明,80%的场景通过Prompt优化+RAG+CoT即可满足需求。微调适用于四种特殊情况:高度专业化领域、Prompt优化已达瓶颈、拥有高质量标注数据或需要低延迟响应。文章提供了五步决策流程:1)判断任务通用性;2)梯度优化Prompt;3)叠加RAG/CoT工具;4)对比不同基座模型;5)评估是否满足微调条件。通过这套方法,可显著降低算力和时间成本,实现模型应用的最优性价比。

2025-11-12 21:55:19 786

原创 详解监督微调(SFT):大模型指令遵循能力的核心构建方案

摘要: 监督微调(SFT)是实现大模型指令遵循能力的核心方法,通过高质量数据微调预训练模型,使其适配特定任务。其关键点在于: 数据质量优先:需注重prompt多样性和合成数据质量,而非盲目追求数据量级,采用IFD/MoDS过滤和聚类优化确保多样性。 训练策略差异:与预训练不同,SFT需屏蔽prompt损失、控制生成终止,并针对多轮对话优化loss计算,避免使用packing策略。 评估闭环:基于3H原则(有用性、诚实性、无害性)构建双轨评估体系(机评+人评),定位短板并反向优化数据。 SFT以轻量化训练和精

2025-11-11 17:19:56 478

原创 一文掌握 MCP 上下文协议:从理论到实践

MCP协议:标准化LLM与外部资源交互 MCP(Model Context Protocol)是由Anthropic推出的开放标准(2024年11月),旨在规范大型语言模型(LLM)与外部数据/工具的交互方式。采用CS架构,包含Host、Client和Server组件,支持JSON-RPC 2.0消息格式,提供stdio和SSE两种传输方式。核心功能包括: Roots机制:通过URI界定服务器操作边界,支持文件路径和HTTP URL; 采样功能:客户端审核LLM请求与结果,实现安全可控的代理交互; 优先级设

2025-11-11 17:08:02 776

原创 大模型如何“读懂”人类文字?从词嵌入到千亿参数的语义魔法

摘要:大模型如何理解人类文字 本文系统阐述了大模型理解人类文字的演进历程。早期采用独热编码存在维度灾难和语义缺失问题,随后词嵌入技术(如Word2Vec)将单词映射到低维向量空间,通过上下文预测学习语义关系。GloVe引入全局共现统计,FastText创新性采用子词单元,增强了生僻词处理能力。随着BERT等模型出现,实现了基于上下文的动态语义表示,通过掩码语言模型和注意力机制,大模型不仅能处理一词多义,还能把握篇章级语义关联。这一从静态词向量到动态语义理解的技术演进,使AI对自然语言的理解愈发接近人类水平。

2025-11-10 20:54:40 851

原创 Attention注意力机制:原理、实现与优化全解析

Attention机制:核心原理与优化方向 Attention机制通过动态权重分配,突破了传统RNN/CNN在序列建模中的局限性。其核心是Scaled Dot-Product Attention,利用Query、Key、Value三者的交互计算相关性权重,并引入缩放因子解决梯度消失问题。在Transformer中,Self-Attention处理序列内部依赖,Cross-Attention建立跨序列关联,而Multi-Head Attention通过并行多头计算提升信息捕捉能力。针对原生Attention的

2025-11-05 15:28:57 955

原创 RAG系统评估与应用框架:从指标到实战落地

RAG系统评估框架:核心指标与实战指南 检索增强生成(RAG)系统的评估聚焦检索器和生成器两大组件,需基于输入问题、生成答案、上下文与参考答案四要素展开。评估指标分为检索质量(上下文相关性、精度、召回率)和响应质量(忠实度、答案相关性)两个维度,其中忠实度确保答案基于上下文,答案相关性则检查回答针对性。评估方法含人工评估(精准但低效)和自动化评估(高效且可扩展)两种方式,推荐工具包括Ragas(专注RAG全流程评估)和Trulens(支持LLM应用迭代)。该框架为优化RAG系统提供了从指标设计到工具落地的完

2025-11-05 14:34:59 956

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除