- 博客(865)
- 收藏
- 关注
原创 为什么说Transformer架构是引擎的心脏?
摘要:本文解析Transformer架构如何通过注意力机制实现大模型的上下文理解能力。文章以通俗方式讲解Transformer的核心组件(编码器、解码器)及自注意力机制的工作原理,类比人类注意力分配过程。同时指出当前大模型存在的幻觉、失焦等技术挑战,并提出精简Context、位置策略等优化方案。最后强调AI行业快速发展带来的机遇,提供大模型学习资源链接,鼓励读者把握技术风口。全文兼顾专业性与可读性,帮助读者建立对Transformer架构的直观认知。
2026-02-20 00:51:28
536
原创 刚刚,Anthropic 发布了 Claude Skills 最佳实践全解
Anthropic发布《Claude Skills终极指南》,提出从Prompt工程向标准化Agent工程的转变。Skills作为模块化能力包,包含指令、元数据和示例,可实现AI能力的复用。指南强调:1)拆解任务为微技能;2)精确命名;3)加入自我验证机制;4)明确Skills与MCP的关系(MCP是工具,Skills是流程)。通过SKILL.md标准格式,企业可实现AI知识沉淀,像管理代码一样管理AI技能。文档还展示了如何将传统长Prompt重构为标准Skill的实例,体现结构化指令的优势。
2026-02-15 21:36:13
578
原创 Agentic RAG到底值不值?四大维度实测给你答案!
RAG系统对比研究:Enhanced与Agentic架构的实测分析 研究对比了两种检索增强生成(RAG)架构:规则化的Enhanced RAG与自主决策的Agentic RAG。实验显示,在金融等特定领域,Agentic的意图识别准确率高达98.8%,查询改写环节NDCG指标平均提升2.8点;但在开放域任务中,Enhanced的固定流程更稳定。成本方面,Agentic的token消耗是Enhanced的3-4倍,耗时增加1.5倍。关键发现包括:文档精选需依赖Enhanced的重排序模块,模型规模对两者影响相
2026-02-10 17:16:13
568
原创 一文讲清:深度学习之自注意力机制剖析,建议收藏!
自注意力机制的发展与应用 自注意力机制(Self-Attention)是Transformer架构的核心组件,最早由Google Brain团队在2017年提出。与传统注意力机制依赖外部信息源不同,自注意力机制完全在输入序列内部进行信息交互,通过计算查询(Q)、键(K)、值(V)三个向量之间的关系来捕捉序列内部的依赖关系。该机制解决了RNN类模型难以并行化和长距离依赖的问题,显著提升了模型性能。其核心计算过程包括:1)通过线性变换生成Q、K、V向量;2)计算缩放点积注意力得分;3)Softmax归一化生成注
2026-02-09 18:00:04
638
原创 大语言模型LLM推理硬件的挑战以及研究方向,建议收藏!
本文探讨了大型语言模型(LLM)推理面临的内存带宽和互连延迟等关键挑战。作者指出,随着模型规模扩大和多模态应用增多,内存容量和带宽成为主要瓶颈,而非计算能力。论文提出了四个研究方向:高带宽闪存(HBF)提供大容量存储、近存计算(PNM)提升内存带宽、3D堆叠技术优化集成密度,以及低延迟互连加速芯片间通信。这些方案旨在解决当前GPU/TPU架构在推理效率上的不足,为下一代AI硬件设计提供新思路。文章特别强调了工业界实际需求与学术研究的脱节,呼吁更多针对实际问题的创新解决方案。
2026-02-05 14:12:44
635
原创 Attention 决定“看谁”,FFN 决定“看懂什么”
摘要: Transformer中的FFN(前馈网络)并非可有可无,而是模型表达能力的核心组件。Self-Attention负责token间的关系建模(信息“来源结构”),而FFN通过升维和非线性变换(如ReLU/GELU)决定信息的“表示形态”,使模型能创造新特征而非仅线性混合。FFN独立作用于每个token,解耦空间结构与语义变换,并通过梯度多样性增强训练效果。在大型语言模型中,FFN参数量占比超半数,凸显其关键作用——Attention建图,FFN算图。缺少FFN,Transformer将退化为线性混合
2026-02-04 20:56:44
589
原创 从GRPO开始,看DeepSeek 2025年的强化学习算法进化
DeepSeek团队在2024年初提出了一种新型强化学习优化算法GRPO(Group Relative Policy Optimization),旨在解决PPO训练不稳定、资源消耗大和DPO依赖高质量标注数据的问题。GRPO通过去除PPO中的Value Model,采用组内平均奖励替代价值模型的拟合奖励,显著降低了训练成本。该算法在数学推理任务中表现优异,后续的DeepSeek-R1模型进一步验证了GRPO的有效性,通过强化学习显著提升了模型的逻辑推理能力。尽管过程式GRPO效果更佳,但由于细粒度步骤定义困
2026-01-22 22:39:45
819
原创 LangChain多智能体系统详解:5种架构模式与实战案例实现
本文系统介绍了LangChain中的多智能体系统(MAS)技术,详细解析了Subagents、Handoffs、Skills、Router和Custom workflow五种实现模式及其特性。通过构建搜索智能体的实践案例,展示了基于LangGraph的工作流和基于LangChain的双智能体架构两种具体实现方案。研究指出,多智能体系统能有效突破单智能体能力边界,适用于复杂动态场景,但多数问题可通过优化提示词和工具调用解决。案例中采用Tavily搜索API实现信息获取,并强调了提示词设计在工作流构建中的关键作
2026-01-20 16:58:24
613
原创 收藏必备!大模型开发指南:AI代理(Agent)评估全攻略 - 从编码到对话的实战方法
本文系统介绍了四种AI代理的评估方法:编码Agent侧重代码质量和执行过程评估;对话Agent关注任务完成度和交互体验;研究Agent强调搜索全面性和来源可靠性;计算机使用Agent则评估界面操作和后端逻辑。提出了pass@k(潜力)和pass^k(稳定性)两个关键指标,为各类AI代理提供了多维度的性能评估框架,包括代码规范、交互质量、研究深度等具体评估维度,并通过典型案例展示了评估指标的实际应用。
2026-01-16 17:41:06
805
原创 深入浅出LangGraph:LLM智能体交接机制与实现
本文探讨了基于LangGraph框架的多智能体系统中控制权转移机制。大语言模型智能体(LLM Agent)在复杂任务处理中存在局限性,而多智能体系统通过专业化分工和协作能更好应对复杂场景。文章重点分析了智能体间"交接"(handoff)这一核心概念,即一个智能体将控制权动态转移给另一个智能体的过程。通过房地产助手示例,展示了监督者模式下的三智能体架构,其中监督者智能体根据查询类型将任务路由给交易历史智能体或房产信息智能体。文章详细介绍了LangGraph中实现交接的两种机制:条件边(基于
2026-01-14 21:31:50
925
原创 收藏学习:Mixture-of-Transformers - 稀疏可扩展的多模态基础模型架构
Mixture-of-Transformers (MoT) 是一种高效的多模态transformer架构,通过解耦非嵌入参数(前馈网络、注意力矩阵和层归一化)实现模态特定处理。实验显示,MoT在文本、图像和语音任务中仅需55.8%-37.2%的FLOPs即可达到密集基线性能,显著降低计算成本。该架构保持全局自注意力以捕捉跨模态关系,在Chameleon和Transfusion等任务中展现出优越性能,同时减少了47.2%的墙钟时间。MoT的创新设计为多模态大模型训练提供了高效解决方案。
2026-01-12 17:54:47
1021
原创 【收藏级】揭秘Claude Research:构建高性能多智能体AI系统的实战经验
Anthropic推出的Claude Research多智能体系统通过主导智能体协调多个并行子智能体,显著提升复杂研究任务处理能力。该系统采用动态搜索流程,相比传统RAG方法在开放式问题上表现更优,性能较单智能体提升90.2%。文章详细介绍了系统架构、执行流程、提示工程原则及评测方法,揭示了多智能体在并行任务、大上下文窗口需求场景的优势,同时也指出了高token消耗等挑战。该系统通过分工协作和动态调整策略,实现了高效信息检索与结构化输出,为构建可靠的多智能体AI系统提供了实践参考。
2026-01-08 21:33:05
766
原创 Agent 的三重觉醒:Tool、Plan、Memory 如何赋予 LLM 灵魂
摘要:本文探讨了大型语言模型(LLM)的三重觉醒过程。第一重觉醒是获得工具使用能力(Tool),使LLM突破知识边界,能够获取实时信息并执行操作。第二重觉醒是获得规划推理能力(Plan/Reason),从直觉式反应升级为深度系统性思考。第三重觉醒是获得记忆能力(Memory),打破无状态限制,实现经验积累和持续学习。这三重觉醒共同将LLM从封闭的"知识琥珀"转变为能够与世界互动、深度思考和持续进化的智能体(Agent),完成了从静态模型到动态智能的质变。
2026-01-07 23:07:18
789
原创 “腾讯混元大模型团队开放岗位,学历要求:大专及以上”学历平权时代来临?AI岗位真的不再看重学历?
本文解析大厂AI岗位"大专可投"现象背后的真相:表面放宽学历限制,实则提高能力要求,非核心岗对项目经验要求更高。AI行业正从迷信学历转向尊重能力,GitHub、Kaggle等平台成为新型学历认证。文章为大专生提供三步突围路径:选准工程向细分赛道、用开源项目代替学历背书、构建技术影响力。核心观点:学历是入场券,作品集才是通行证。
2026-01-06 15:14:26
1609
原创 2025 Agent元年,2026百花齐放!想拿50w+offer,这份大模型应用工程师学习路线请收好!
文章指出大模型正处于快速发展和落地阶段,2025年将是Agent元年,现在是大模型应用工程师入门的最佳时机。文章推荐了一个完整的大模型应用学习路线,包括提示词工程、检索增强生成(RAG)、模型微调、模型部署以及人工智能系统和项目实践。学习这些技术后可参与开源项目,大模型领域注重项目落地。
2026-01-06 15:10:33
534
原创 AI智能体应用架构全解析:从用户输入到生成回复,揭秘12个关键步骤与核心组件!
本文详细解析了AI智能体应用架构的请求全流程,从用户输入问题到生成回复的12个关键步骤,包括API网关层、AI业务逻辑层、模型层、向量知识库层等核心组件的工作原理。通过流程图展示了AI智能体如何处理用户请求、进行向量化、知识检索、重排序以及工具调用等环节,为开发者提供了完整的AI智能体架构设计思路,并附赠系统学习大模型AI的方法指南。
2026-01-06 14:57:58
624
原创 Coze AI Agent“智能体”工作流搭建全解析:一篇文章让你彻底明白!
最近很多学生和朋友问我:如何用Coze搭建自己的AI智能体工作流程?想参加线上或者线下课学习。今天花点时间跟大家讲讲如何使用Coze搭建自己的AI Agent!
2026-01-06 14:56:25
1056
原创 谷歌发布智能体(Agent)白皮书:AI如何自主完成复杂任务,揭秘人工智能的未来!
文章解析谷歌《智能体简介》白皮书,详述AI智能体的定义、架构(模型、工具、编排层)、五级进化路径及企业落地方式。智能体使AI从"被动执行"进化为"主动拆解目标、调用工具、闭环完成任务"的合作伙伴,将改变企业办公、旅游、医疗、电商等行业。同时提供AI大模型学习资源,助力读者掌握前沿技术。
2026-01-06 14:53:22
963
原创 2026年,别再盲目学AI了!这套90天“非编程”速成路径,专为小白设计,有人已靠它涨薪3倍(附内部学习资料)
随着AI大模型从“技术炫技”走向“产业落地”,企业对人才的需求发生了结构性转变。百度智能云的数据揭示了一个关键信号:2024年第二季度,传统算法岗招聘需求下降了17%,而“AI提示工程师”等新兴岗位的需求却激增了340%。另一份报告显示,专业AI提示工程师的薪资涨幅可达187%,甚至超过200%。
2026-01-05 15:38:52
703
原创 Java开发者AI大模型领域转型指南:深入对比分析、精心规划学习路径与成功策略!
在当今科技领域,人工智能(AI)凭借技术的持续进步,已成为备受瞩目的热门话题。众多开发者正考虑从传统软件开发领域,例如Java,迈向人工智能的新天地。今天,让我们一同探讨Java开发者转向人工智能领域的可行性,包括转型带来的优势、薪资水平的对比,以及成功转型所需的知识体系和学习路径。
2026-01-05 15:35:49
1043
原创 大模型Agent工具调用能力体系化优化攻略:五大关键策略揭秘,实现工业级Agent系统的必备知识!
文章系统拆解了如何体系化优化大模型Agent的工具调用能力,提出五大关键策略:动态函数路由减少工具噪音、CoT+Plan-强制模型先规划后执行、结果校验层拦截参数错误、长程记忆注入保持上下文连贯、日志驱动闭环优化。通过真实案例验证,这些方法能显著提升工具调用稳定性,让Agent从"爱乱跑"变得"有大脑",是实现工业级Agent系统的必备知识。
2026-01-05 15:33:47
685
原创 【收藏级教程】基于大语言模型的自我编程Agent系统构建方法与实战!
本文介绍了一种基于LLM的"自我编程"Agent系统构建方法,通过改造传统JSON调用方式实现"Code+泛化调用"机制,使Agent能编写并运行代码控制自身行为。系统采用Spring Boot技术栈,结合混合模型策略,设计了分层记忆系统、上下文工程和工具包体系。该Agent具备分支、循环等复杂逻辑处理能力,可在DevOps系统中提供智能化支持,成为可靠的"1.5线"答疑助手,具备初级程序员的知识储备和问题解决能力。
2026-01-05 15:31:02
587
原创 知识库系统:大模型应用的核心支撑与解耦之道!
知识库系统是大模型应用的关键基础设施,与管理模型无法承载的"外部记忆",增强模型能力并提升响应效率。构建知识库不仅是工程实现,也是设计哲学的思辨,需兼顾可部署性、高可用性与可扩展性。知识库应基于实际需求灵活构建,与模型协同运作,共同催生出超越单体能力的智能体。
2026-01-05 15:27:00
763
原创 30+程序员的未来不是梦:全面转型指南与成功秘诀,找到你的第二人生!
《论语·为政》中讲,“三十而立”,讲的是一个人到了三十岁的时候,就应该有属于自己完整的学术体系从而“知礼”,当然现在的中国和一千多年前的春秋毕竟还是南辕北辙的两个时代。白驹过隙的社会发展,让我们的三十知礼变成了三十岁安身立命,从容面对生活的苦难。
2026-01-04 15:26:37
670
原创 成为应用型AI产品经理的完整学习路径指南!2026最新版!
文章强调AI产品经理的核心是产品能力而非技术,将AI产品经理分为三类,其中应用型最适合普通人。提出三步学习法:夯实产品基本功、掌握AI项目落地能力、补充AI知识技能。通过系统学习,可成为懂业务、懂产品、更懂AI的全能型人才,起点课堂全站通会员提供了完整学习路径。
2026-01-04 15:16:27
915
原创 大模型RAG技术实战:21种文本分块策略详解(小白必看)
文章详细介绍了RAG系统中的21种文本分块策略,从基础方法(如换行符分割、固定大小分块)到高级技术(如语义分块、智能代理分块)。每种策略均提供适用场景分析和代码实现,帮助开发者根据数据特点选择合适方法。文章强调文本分块是RAG系统性能的关键因素,并提供混合分块策略作为综合解决方案,以提高信息检索准确性和生成质量。
2026-01-04 14:55:15
793
原创 函数式编程的核武器:用Monad打造永不崩溃的AI Agent!
文章介绍Monadic Context Engineering (MCE),基于函数式编程Monad概念构建AI Agent的新方法。通过将状态管理、错误处理和异步执行封装在AgentMonad容器中,解决了传统Agent编程的代码混乱问题。这种架构使Agent开发模块化、声明化,能自动处理错误和状态传播,支持并发执行和元智能体生成,让AI Agent开发像搭乐高一样简洁高效。
2026-01-04 14:53:38
874
原创 打造私人定制开发利器:Qwen Code、vLLM与Qwen3-Coder强强联合!
本文介绍了如何利用Qwen Code和vLLM构建内网私有AI编程助手。主要内容包括:1)通过ModelScope下载Qwen3-Coder-30B-A3B-Instruct模型;2)使用vLLM部署模型API服务,详细说明了关键参数配置;3)安装配置Qwen Code客户端并连接私有模型;4)通过五子棋游戏和数据分析页面两个案例展示了实际开发效果。文章提供了完整的工具链部署方案,使开发者能够在纯内网环境下搭建高性能AI编程辅助平台,适合需要数据隔离的企业场景。
2026-01-04 14:52:23
1083
1
原创 传统RAG vs Agentic RAG,智能体如何提升检索增强生成效果!
文章对比分析了传统RAG的局限性,包括单次检索生成、缺乏推理能力和固定策略等问题。介绍了Agentic RAG的创新架构,通过在RAG各阶段引入AI智能体,实现查询重写、动态上下文获取、智能信息源选择和答案质量检查等功能,形成可迭代优化的闭环系统,有效解决了传统RAG的诸多问题,提升了检索增强生成的智能化水平和结果质量。
2026-01-03 10:15:00
895
原创 企业AI智能体落地关键技术栈:六大技术助力智能体实现与部署!
企业实际应用的6大AI智能体类型:1)具备推理能力的资料查询Agent(如Perplexity、Harvey AI);2)语音交互Agent(如ElevenLabs、Deepgram);3)跨系统通信的协议Agent(埃森哲MCP等标准);4)模拟人机操作的计算机Agent(如OpenAI Operator);5)协作编程的代码Agent(如GitHub Copilot);6)自动调研的报告生成Agent(如Google Gemini DR)。这些成熟技术已在医疗、金融、客服等领域落地,建议企业优先关注这六
2026-01-03 08:00:00
503
原创 AI智能体架构设计全攻略:一文掌握9大核心技术!
AI 智能体架构设计的9大核心技术包括:1)AI 智能体,具备自主感知、决策和执行能力的软件助手;2)Agentic AI,多智能体协作系统,实现复杂任务分解与协调;3)WorkFlow,任务分步执行机制提升准确性;4)RAG(检索增强生成),结合知识库检索优化回答质量;5)Fine-tuning,通过参数调整适配特定任务需求;6)Function Calling,实现大模型与外部API的实时交互;7)MCP(多智能体协作平台);8)A2A(智能体间通信);9)AG-UI(智能体交互界面)。这些技术共同构建
2026-01-02 08:45:00
1981
原创 大模型架构设计深度解析:从 DeepSeek R1 到 Kimi K2,8种架构全面剖析!
本文对比分析了当前主流开源大模型的架构演进。尽管从GPT-2到DeepSeek-V3等新模型已发展7年,但核心Transformer架构仍保持稳定,主要改进集中在细节优化:如RoPE位置编码、分组查询注意力(GQA)替代多头注意力、SwiGLU激活函数等。文章重点剖析了8个代表性模型的技术创新:DeepSeek V3采用多头潜在注意力(MLA)和混合专家(MoE)提升计算效率;OLMo 2通过后归一化(Post-Norm)和QK-Norm增强训练稳定性;Gemma 3引入滑动窗口注意力优化内存;Mistra
2026-01-02 08:45:00
768
原创 MCP上下文管理革命:从对话工具到工作伙伴的AI进化之路!
文章详细介绍了MCP上下文管理技术,通过三层记忆架构和智能化上下文压缩,解决传统AI的Token限制和状态丢失问题。MCP MemoryKeeper等项目实现了跨会话记忆、项目上下文关联等功能,让AI从"对话工具"升级为具有持续学习能力的"工作伙伴"。该技术已应用于金融客服、制造业设备维护等领域,提供了企业级持久化策略、效能优化和安全保护方案。
2026-01-01 09:00:00
1024
原创 LangGraph核心优势与应用:AI智能体开发的实用指南,8个步骤轻松掌握!
文章介绍LangGraph(LangChain高级扩展)的核心优势及其在AI智能体开发中的应用。通过太阳能节能助手项目,详细展示8个开发步骤:工具定义、状态管理、错误处理、LLM配置和图结构构建等。LangGraph提供状态管理、多工具调度和循环计算能力,适用于从原型验证到企业部署的各种场景,是程序员学习大模型智能体开发的实用指南。
2026-01-01 08:15:00
747
原创 2026年最新版!大模型学习终极指南:4大方向解析,避坑指南与资源合集,助你少走三年弯路!
本文详细介绍了大模型入行的四大方向(数据、平台、应用、部署)、新人常见误区及应对策略,并提供了系统化学习资源。作者强调大模型是新风口,掌握AI技术可增强职场竞争力,将学习路线分为L1到L4四个阶段,从基础知识到模型微调与部署,全方位帮助读者高效入门大模型领域,避免踩坑,并提供免费学习资源包供领取。
2025-12-31 15:50:34
1118
原创 告别传统全栈:大模型浪潮下,能驾驭“人机协同”的新物种工程师已诞生!
你既能用React/Vue构建出丝滑流畅的前端界面,又能用Spring Boot/Django打造出稳健高效的后端服务。你左手调试着CSS动画,右手优化着数据库索引。从服务器采购到用户点击,整个数字生命周期的每一个环节,都在你的掌控之中。
2025-12-31 15:17:05
933
原创 AI大模型训练全攻略:从数据准备到部署策略,掌握模型选择与训练技巧的入门必读!
本文详细介绍了AI模型训练的全过程,从定义用例、数据准备、模型选择到部署维护,涵盖了训练原则、应用领域、面临的挑战及实用工具。文章强调了数据质量和算法选择的重要性,并提供了针对初学者的学习路径和资源,帮助读者从零开始掌握AI模型开发技能,实现从理论到实践的跨越。
2025-12-31 09:30:00
1061
原创 BLIP多模态AI技术详解:统一视觉与语言的革命性框架!
BLIP是Salesforce Research提出的革命性多模态AI框架,通过创新的MED架构统一了视觉-语言的理解与生成任务。其CapFilt方法能有效过滤噪声数据,提升训练质量。BLIP不仅能对齐视觉与语言,还能进行图像描述生成、视觉问答等生成式学习,显著提升了零样本和少样本场景下的性能。这一技术标志着多模态AI从"理解"走向"生成"的关键转折,为跨领域应用提供了强大工具。
2025-12-31 09:00:00
1547
原创 AI Agent状态回放的重要性及MCP解决方案:提升智能体性能的关键技术解析!
随着 AI agents 日益复杂,在对话与会话之间管理其 state 已成为生产环境落地中最关键的挑战之一。当 agents 需要在多轮交互中保持上下文、从中断的流程中恢复、或对其决策过程进行审计时,传统的无状态(stateless)架构会失效。这正是 State Replay 必不可少的原因,而 Model Context Protocol(MCP)则提供了优雅的解决方案。
2025-12-31 08:45:00
951
原创 2026年大语言模型(LLM)就业市场深度解析:万字长文揭秘技术趋势、必备技能与职业发展路径!
随着大语言模型(Large Language Models, LLMs)技术的持续突破,人工智能领域正加速从通用对话交互向任务驱动的智能体(Agent)系统转型。截至2025年4月,企业对LLM领域专业人才的需求呈现爆发式增长,核心能力聚焦于检索增强生成(RAG)、智能体任务自动化、模型对齐优化及多模态融合四大方向。本文将系统梳理2025年大模型就业市场的技术发展脉络、核心技能体系、行业落地场景、高价值实践项目及职业发展策略,为从业者提供兼具前瞻性与实用性的职业规划参考,助力其精准捕捉行业机遇。
2025-12-30 15:44:56
942
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅