如下是一些常用技巧,可供参考:
-
使用高效的优化器:如AdamW和Adam,这些优化器可以帮助模型更快地收敛。
-
利用硬件加速器:使用GPU或TPU来加速计算。
-
最大化批量大小:增加批量大小可以提高训练效率,但需要更多的内存。
-
使用贝叶斯优化:如果超参数搜索空间很大,贝叶斯优化可以帮助找到最佳超参数。
-
设置DataLoader中的max_workers:增加工作线程数可以加快数据加载速度。
-
设置DataLoader中的pin_memory:将数据固定在内存中可以加速数据传输到GPU。
-
使用混合精度训练:混合精度训练可以减少内存使用并加速计算。
-
使用He或Xavier初始化:这些初始化方法可以帮助模型更快地收敛。
-
使用激活检查点:通过牺牲一些运行时间来优化内存使用。
-
利用多GPU训练:通过模型、数据、管道或张量并行来利用多个GPU。
-
对于大型模型,使用DeepSpeed、FsDP、YaFsDP等:这些工具可以帮助优化大型模型的训练。
-
在将数据传输到GPU后归一化数据:对于数值数据(如像素),归一化可以提高训练效果。
-
使用梯度累积:梯度累积可以在某些情况下带来边际改进。
-
始终使用DistributedDataParallel而不是DataParallel:DistributedDataParallel在多GPU训练中更高效。
-
直接在GPU上创建张量:使用
torch.rand(2, 2, device=...)直接在GPU上创建张量,而不是先创建在CPU上再传输到GPU。
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
万分感谢🙏🙏您的点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!
2864

被折叠的 条评论
为什么被折叠?



