- 博客(1103)
- 资源 (23)
- 收藏
- 关注
原创 机器学习笔记 - 基于Ubuntu + OnnxRuntime + C#进行Yolov5模型批量推理
项目需求,需要Ubuntu20.04系统 + OnnxRuntime中进行推理,前面的文章记录了驱动安装、CUDA安装等。Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7-CSDN博客。
2024-10-27 20:45:07 293
原创 linux学习笔记 常用命令记录
ubuntu的系统字体放在目录:/usr/share/fonts/truetype下,到这个文件夹下创建一个文件夹,然后将字体放在刚创建的目录下,然后更新字体缓存,以便系统能够识别新安装的字体。scp /home/zyh/app_inference/* root@目标服务器ip:/home/zyh/app_inference/#进程执行的用户身份。
2024-10-27 10:47:55 684
原创 linux学习笔记 Ubuntu下的守护进程supervisor安装与多项目部署
我这里首先是在本地WSL上进行安装,WSL2的是ubuntu 24.04,之后又再正式环境的ubuntu 20.04上安装,再次记录一下。
2024-10-26 20:23:16 1027
原创 数字图像处理 - 基于ubuntu20.04运行.NET6+OpenCVSharp项目
上一篇,记录了Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7的过程,最终的目的是要这些服务器上运行.net6的程序,进行图像处理、onnxruntime推理等。这里记录进行OpenCVSharp的安装和使用,因为使用OpenCVSharp比较简单,也不用它的DNN模块,所以也不想重新编译OpenCV,因为遇到了问题,所以记录一下这个事情。
2024-10-26 14:36:53 241
原创 Ubuntu20.04 更新Nvidia驱动 + 安装CUDA12.1 + cudnn8.9.7
最近客户给了几台GPU服务器,长期放置落灰那种,然后想利用起来,所以上去看看了配置,系统是Ubuntu20.04,相关的驱动版本稍嫌老一些,所以需要更新Nvidia驱动,同时在安装CUDA和CUDNN,查看了显卡型号之后,打算使用onnxruntime进行推理,对比了版本,最后选择了CUDA12.1 + CUDNN8.9.7。
2024-10-24 09:46:16 895
原创 理解Android framework之AOSP:从内核到应用层
Android framework确保设备的各个部件和程序顺利协同工作。对于想要全面了解 Android 设备内部工作原理、开发高质量应用、优化设备性能以及充分利用 Android 生态系统潜力的人来说,了解 Android 框架也是必不可少的。它是连接用户、开发者和 Android 平台的桥梁,使他们能够解锁新功能和新可能性。
2024-08-06 20:59:23 1818
原创 机器学习笔记 - python学习记录三 Python中的矢量化
当我们必须处理大量数据集时,计算上非最优的函数可能会成为算法的巨大瓶颈,最终导致模型运行时间过长。为了确保代码计算效率高,我们将使用矢量化。任何算法执行的时间复杂度都非常重要,决定了应用程序是否可靠。在实时输出应用方面,尽可能在最佳时间内运行大型算法非常重要。为此,Python提供了一些标准数学函数,可以快速操作整个数据数组,而无需编写循环。包含此类函数的库之一是numpy。让我们看看如何在矢量化的情况下使用这个标准函数。矢量化用于加速 Python 代码,而无需使用循环。
2024-08-03 14:53:49 261
原创 如何在 Android 设备上更改您的位置?
全球定位系统 (GPS) 是一种基于卫星的导航系统,用于确定设备在地球上的当前位置。Android 设备配备了 GPS 接收器,可与绕地球运行的卫星进行交互。一旦设备锁定至少四颗卫星,它就可以通过计算信号从每颗卫星传输到设备所需的时间来三角测量其位置。这个过程称为三边测量,可以精确确定地理坐标。您是否曾觉得需要在 Android 设备上虚拟更改您的位置?无论是为了访问受地理限制的内容还是为了好玩而伪造 GPS,更改您的位置都比您想象的要容易。
2024-08-02 11:17:57 2170
原创 大语言模型学习笔记 LangChain简述
La是一个由大型语言模型 (LLM) 驱动的应用程序开发框架。LangChain 旨在为开发人员提供一系列功能,利用大型语言模型简化应用程序的创建和管理。LangChain 可充当几乎所有 LLM 的通用接口,提供集中式开发环境来构建 LLM 应用程序并将其与外部数据源和软件工作流集成。LangChain 的模块化方法允许开发人员动态比较不同的提示甚至不同的基础模型,而无需重写代码。这种模块化环境还允许使用多个 LLM 的程序:例如,一个应用程序使用一个 LLM 来解释用户查询,另一个 LLM 来编写响应。
2024-08-02 10:35:16 1298
原创 机器学习笔记 - RAFT 光流简读
光流是图像序列中像素的表观运动。为了估计光流,场景中物体的移动必须具有相应的亮度位移。这意味着一个图像中移动的红球在下一个图像中应该具有相同的亮度和颜色,这使我们能够确定它以像素为单位移动了多少。下图显示了光流示例,其中一系列图像捕获了逆时针旋转的吊扇。最右边的彩色图像包含从第 1 帧到第 2 帧每个像素的表观运动,它经过颜色编码,不同的颜色表示像素运动的不同水平和垂直方向。这是密集光流估计的示例。的估计为每个像素分配一个 2D 流向量,描述其在一段时间内的水平和垂直位移。在。
2024-08-01 15:49:53 300
原创 在Linux上编译软件并且运行的入门示例
许多年前,随着 UNIX 和 Linux 变体的增加,编写可以在所有变体上运行的程序变得更加困难。然后,前一阶段生成的汇编语言代码被转换为由计算机直接理解的代码片段组成的目标代码。然而,用户可以在自己的主目录中下载和安装小软件包,这些软件通常只对他们个人有用。它通过跟踪整个程序的哪些部分已更改,仅编译自上次编译以来已更改的程序部分来帮助开发大型程序。选项命名的目录(通常是 --prefix 目录的子目录)将保存与机器相关的文件,例如可执行文件。脚本尝试猜测编译期间使用的各种与系统相关的变量的正确值。
2024-07-31 22:29:17 631
原创 OpenCV学习笔记 比较基于RANSAC、最小二乘算法的拟合
RANSAC 与最小二乘拟合曲线的比较。(a) 和 (c) 中的红线显示使用 RANSAC 拟合到最小强度点的曲线。(b) 和 (d) 中的蓝线显示使用最小二乘法拟合到最小强度点的曲线,由于存在异常值,该方法会漏掉裂缝。就拿直线拟合这件事来讲,RANSAC对于异常点不敏感,而对于最小二乘算法,即使有一个离群点,也会被影响。就类似下面的图像所示。
2024-07-31 22:16:00 177
原创 运动控制基础知识一
它用于简单的定位控制。运动控制的一个典型的例子是各种马达的定位控制。JOG动作是无移动距离指定的移动动作,用于手动电机定位,电机持续运转直至±LIM信号输入或停止指令,可在运转中随时改变速度、加减速时间。步进电机的转速与脉冲信号速度成正比,转速与脉冲信号的关系由下式确定,脉冲个数决定转动量,脉冲频率决定转速。速度控制方法进一步减小了直线加减速运动中的突变冲击,通过减小加减速启动和停止时的加速度,减小了运动启动和停止时的冲击。以恒定的速度(频率)输出脉冲,设备以恒定的速度运动,在启动和停止时,速度发生突变。
2024-07-14 20:53:12 490
原创 自然语言处理(NLP)与大语言模型(LLM) 主要差异
有句俗话叫“没坏就不要修”,很多公司都有运行良好的 NLP 系统。这些公司没有动力重新开始使用 Gen AI,如果他们决定尝试 LLM,他们很可能会先解决全新的问题(也许是传统方法无法解决的问题)。因此,使用“传统”NLP 技术的现有解决方案完全过时还需要相当长的时间(如果真的发生的话)。与此同时,这些公司将需要在生产中维护现有的 NLP 系统。这意味着他们仍然需要知道如何调试文本预处理管道、评估 NLP 模型,甚至可能从文本数据中提取新特征的员工,以不断改进现有系统。
2024-07-10 12:08:32 1535
原创 ASP.NET Web应用中的 Razor Pages/MVC/Web API/Blazor
大多数服务器端语言都采用广泛使用的模型-视图-控制设计。它由三个主要组件组成:控制器、模型和视图。控制器负责输入并与模型和视图交互。视图负责用户界面,模型代表业务逻辑和数据。虽然 MVC 模型适用于 API 开发,但 Razor Pages 专注于页面而不是 API。如果您打算使用 Angular 或 React 等前端框架,那么 MVC 将是一个合适的选择。Razor Pages 是允许轻松加载数据的网页,类似于 HTML 页面。它们与 ASP.NET MVC 的视图组件非常相似,具有相同的语法和功能。
2024-07-06 11:05:03 1449
原创 Jest是什么软件?
Jest是一个由Facebook开发的开源JavaScript测试框架,它专为JavaScript项目的测试而设计,特别适用于React和Node.js环境。Jest以其简单的配置、高效的性能和易用性而闻名,成为现代JavaScript项目中不可或缺的测试工具。
2024-07-04 08:17:26 442
原创 Tailwind CSS是什么?
定义:Tailwind CSS是一个高度可定制的低级CSS实用程序类集合,用PostCSS编写,旨在通过JavaScript进行定制。它提供了一系列基础工具类,允许开发者通过组合这些工具类来快速构建页面和UI。起源:Tailwind CSS最初由Adam Wathan等人于2017年11月1日在GitHub上作为开源项目发布。随着时间的推移,它逐渐成长为一个成熟且流行的CSS框架。
2024-07-04 08:13:07 668
原创 机器学习笔记 LightGBM:理解算法背后的数学原理
LightGBM是微软开发的开源、分布式、高性能梯度提升框架。它旨在实现高效、可扩展和准确。该框架利用决策树来提高模型效率并最大限度地减少内存使用量。LightGBM 的开发是为了克服传统梯度提升机 (GBM) 的计算效率低下问题,因为传统梯度提升机需要处理所有特征上的所有数据实例,从而产生大量计算。为了解决这个问题,LightGBM 引入了两项关键技术:基于梯度的单侧采样 (GOSS) 和独占特征捆绑 (EFB)。1、基于梯度的单侧采样(GOSS)
2024-07-02 14:57:52 1547
原创 中国国产AI芯片的崛起
Linux 基金会联合英特尔、谷歌、高通、Arm、三星等公司成立了 UXL 基金会(俗称“反 CUDA 联盟”),致力于开发一套新的开源软件套件,让 AI 开发者可以在任何成员公司的芯片上进行编程,试图取代 CUDA 成为首选的 AI 开发平台。通过产学研的共同努力,一定可以取得突破。目前,在Nvidia严禁在其他AI芯片硬件平台上运行CUDA,加之美国芯片禁令进一步加重、全球算力紧缺的背景下,中国大模型软件公司难以获得最前沿的GPU芯片,因此如何将现有的大模型迁移到新的计算平台上成为首要解决的痛点。
2024-07-02 13:55:43 1468
原创 如何在 Linux 中后台运行进程?
一、后台进程在后台运行进程是 Linux 系统中的常见要求。在后台运行进程允许您在进程独立运行时继续使用终端或执行其他命令。这对于长时间运行的任务或当您想要同时执行多个命令时特别有用。在深入研究各种方法之前,让我们先了解一下什么是后台进程。在 Linux 中,后台进程是指独立于终端运行的进程。执行命令时,它通常在前台运行,这意味着它会占用终端直到完成。另一方面,在后台运行进程允许您执行其他命令,而进程则继续默默运行。
2024-06-30 09:40:26 2809
原创 机器学习笔记 人脸识别技术全面回顾和小结(2)
随着科学技术的发展,人脸识别技术取得了巨大的成就,但在实际应用中仍有改进的空间。未来,可能会有一种用于人脸识别的专用相机,它可以提高图像质量,解决图像滤波、图像重建、去噪等问题。我们还可以使用3D技术来补充2D图像,以解决旋转和遮挡等问题。人脸识别技术以其便捷性在安全和金融领域得到了广泛的应用。随着科技的快速发展,人脸的应用将更加发达,应用场景将更加多样。然而,人脸识别很容易引发技术、法律和道德问题。
2024-06-30 06:30:00 941
原创 机器学习笔记 人脸识别技术全面回顾和小结(1)
人脸识别是视觉模式识别的一个细分问题。人类一直在识别视觉模式,我们通过眼睛获得视觉信息。这些信息被大脑识别为有意义的概念。对于计算机来说,无论是图片还是视频,它都是许多像素的矩阵。机器应该找出数据的某一部分在数据中代表了什么概念。这是视觉模型识别中的一个粗略分类问题。对于人脸识别,需要在所有机器认为人脸的数据部分区分人脸属于谁。这是一个细分问题。广义的人脸识别包括用于构建人脸识别系统的相关技术。它包括人脸检测、人脸定位、身份识别、图像预处理等。人脸检测算法是找出一张图像中所有人脸的坐标系。
2024-06-29 10:03:42 959
原创 计算机视觉 图像融合技术概览
在许多计算机视觉应用中(例如机器人运动和医学成像),需要将来自多幅图像的相关信息集成到一幅图像中。这种图像融合将提供更高的可靠性、准确性和数据质量。多视图融合可以提高图像的分辨率,同时恢复场景的 3D 表示。多模态融合结合了来自不同传感器的图像,称为多传感器融合。其主要应用包括医学图像、监控和安全。
2024-06-29 09:17:57 403
原创 计算机视觉:2023 年回顾和 2024 年趋势
计算机视觉 (CV) 领域经历了充满非凡创新和技术飞跃的一年。这一年见证了人工智能驱动的视觉技术的显著进步,深刻改变了我们对视觉数据的交互和解读。从生成式人工智能奇迹到复杂的分析工具,CV 不仅不断发展,而且重新定义了其界限。
2024-06-22 14:55:48 1556
原创 NLP大语言模型的缩放定律
论文《神经语言模型的缩放定律》包含对交叉熵损失的语言模型性能的经验缩放定律的研究,重点关注Transformer架构。实验表明,测试损失与模型大小、数据集大小和用于训练的计算量呈幂律关系,某些趋势跨越超过七个数量级。这意味着简单的方程控制着这些变量之间的关系,这些方程可用于创建最有效的训练配置,以训练非常大的语言模型。此外,网络宽度或深度等其他架构细节似乎在很大范围内影响甚微。
2024-06-22 09:26:00 1007
原创 2024 年值得关注的 9 个最佳开源大语言模型
由于 LLM 是开放的,你不必为模型本身付费,但你需要考虑与之相关的其他成本,例如所需的资源、托管和培训。最复杂的是 Mistral 7B 变压器模型、Mistral 8x7B 开放模型,以及一个较小的英语版本,内容容量为 8K。由于其完全开源的特性以及与同等质量和尺寸的同类模型相比更低的拥有成本,GPT-NeoX-20B 更易于研究人员、技术创始人和开发人员使用。使用 1800 亿个标记的数据集,该 LLM 在训练期间所需的碳足迹仅为 GPT-3 的 1/7,并且表现出与 GPT-3 相当的性能。
2024-06-18 16:39:55 1966
原创 机器学习笔记 - 用于3D点云数据分割的Point Net的训练
当说到语义分割时,首先会想到图像,因为它是识别给定图像中每个像素的概念。分割可以推广到高维空间,对于 3D 点云,它是为每个 3D 点分配一个类的概念。为了更好地理解这个问题由什么组成,我们应该很好地理解点云实际上是什么。每个类(杂乱的点除外)都有独特且一致的结构。例如,墙壁、地板和天花板是平坦且连续的平面;诸如椅子和书柜之类的东西也应该在许多不同区域具有相同的结构。我们希望我们的模型能够以一定程度的准确性识别不同类别的不同结构。我们需要构建一个损失函数来引导我们的模型以有用的方式学习这些结构。
2024-06-16 21:04:01 294
原创 机器学习笔记 - 用于3D点云数据分类的Point Net的训练
ShapeNet 是一项持续不断的努力,旨在建立一个注释丰富的大型 3D 形状数据集。我们为世界各地的研究人员提供这些数据,以支持计算机图形学、计算机视觉、机器人技术和其他相关学科的研究。ShapeNet 是普林斯顿大学、斯坦福大学和 TTIC 研究人员的合作成果。ShapeNetShapeNet如果您使用Colab,则可以运行以下代码来获取数据,会下载很久。数据集包含 16 个带有类标识符的文件夹(在 README 中称为“synsetoffset”)。我们要进行Dataset的自定义。
2024-06-15 09:54:18 309
原创 机器学习笔记 - 用于3D数据分类、分割的Point Net的网络实现
T-net上一篇,我们大致了解了Point Net的原理,这里我们要进行一下实现。机器学习笔记 - 用于3D数据分类、分割的Point Net简述-CSDN博客文章浏览阅读3次。在本文中,我们将了解Point Net,目前,处理图像数据的方法有很多。从传统的计算机视觉方法到使用卷积神经网络到Transformer方法,几乎任何 2D 图像应用都会有某种现有的方法。然而,当涉及到 3D 数据时,现成的工具和方法并不那么丰富。3D 空间中一个工具就是Point Net。
2024-06-12 17:14:06 368
原创 机器学习笔记 - 用于3D数据分类、分割的Point Net简述
在本文中,我们将了解Point Net,目前,处理图像数据的方法有很多。从传统的计算机视觉方法到使用卷积神经网络到Transformer方法,几乎任何 2D 图像应用都会有某种现有的方法。然而,当涉及到 3D 数据时,现成的工具和方法并不那么丰富。3D 空间中一个工具就是Point Net。点网是一种新型的神经网络,直接使用整个点云。它可以对输入点云进行分类,执行语义分割,甚至部分分割。理解点网如何有效完成多项任务的关键在于,它能够提取点云的局部和全局特征, 而不管方向如何。
2024-06-12 17:02:30 854
转载 C# Swagger 报错:Actions require an explicit HttpMethod binding for Swagger/OpenAPI 3.0
报错:Swashbuckle.AspNetCore.SwaggerGen.SwaggerGeneratorException: Ambiguous HTTP method for action - WebApplication2.Controllers.CustomQueryBuilderController.Invoke (WebApplication2). Actions require an explicit HttpMethod binding for Swagger/OpenAPI 3.0。
2024-06-12 16:21:30 146
原创 有趣的数学 数值方法求解微分方程一
数值方法,简单来说,就是用来解决直接求解的数学问题。通过有限差分方法对微分方程 (DE) 进行数值求解。通过求解微分方程,我们可以对动力系统进行模拟并对世界进行预测。一种称为物理信息神经网络(PINN)的新型神经网络,这是传统科学计算和现代机器学习融合的新兴领域。它还有其他几个名称,例如科学机器学习或基于物理的深度学习。它基本上包括使用神经网络求解微分方程。思路大概是由于神经网络是通用函数逼近器,因此它们可以用于求解任何函数。因此,通过对损失函数进行小的调整,它们也可以用于求解描述自然定律的微分方程。
2024-06-11 18:27:06 1314
原创 有趣的数学 数值方法简述
令许多纯数学家烦恼的是,并非所有问题都能通过解析方法解决,也就是说,不能通过使用已知规则和逻辑来获得精确解的方法。这时就需要使用数值方法。数值方法将近似解,或者在最坏的情况下,将解限制在某个范围内。数值方法,简单来说,就是用来解决直接求解的数学问题。打个比方,你想要算一个非常复杂的方程的解,但是这个方程没有现成的公式可以套用。这时候,数值方法就派上用场了。将连续的问题转化为离散的点或网格。例如,将一个曲线用一系列离散的点来近似表示。用已知的简单公式或算法来近似地表示原问题。
2024-06-11 18:22:43 484
原创 机器学习笔记 - LoRA:大型语言模型的低秩适应
随着大型语言模型 (LLM) 的规模增加到数千亿,对这些模型进行微调成为一项挑战。传统上,要微调模型,我们需要更新所有模型参数。这也称为完全微调 (FFT)。下图详细概述了此方法的工作原理。完全微调FFT 的计算成本和资源需求很大,因为更新每个参数都需要大量的处理和内存。其次,使用像 FFT 这样的方法,存在灾难性遗忘的风险,即模型在过度学习新数据时会忘记以前学到的信息。于是为应对这一情况,出现了一系列称为参数高效微调 (PEFT)的方法。
2024-06-10 12:33:58 535
原创 有趣的数学 为什么绝对值和模都用两个竖线表示?
是自然且统一的选择,方便记忆和理解。具体意义依赖于上下文,可以根据使用环境(实数、复数、向量等)来区分是指绝对值还是模。绝对值和模都可以使用两个竖线表示,是因为它们在数学概念上有相似的性质,不过是应用场景不同。两个概念都涉及到“大小”或“距离”的测量,因此使用相同的符号。比如2024年的高考数学第一题,已知。
2024-06-10 12:10:10 1360
原创 C/C++学习笔记 CMake 与 Make有什么区别?
编译器是一种将源代码翻译成机器码的程序。代码的编译包括几个步骤,包括预处理、编译和链接,以创建可在其目标计算机上直接运行的库或可执行文件。 这个编译过程也称为构建过程,这是 CMake 和Make发挥作用的地方。CMake 和 Make 之间的主要区别之一是 CMake 创建的输出可供 Make 等构建系统使用。这意味着 CMake 充当其他构建系统的生成器,并不负责实际编译。相比之下,Make 的输出是可以在目标计算机上执行的已编译二进制文件。
2024-06-09 17:45:44 2439
原创 C/C++学习笔记 C语言中的\0以及查找字符串中字符出现的频率
在此示例中,计算了字符串对象中字符的频率。为此,使用size()函数查找字符串对象的长度。然后for 循环迭代直到字符串末尾。在每次迭代中,检查字符是否出现,如果发现,则计数增加 1。
2024-06-09 10:42:20 474
原创 生成式人工智能 - 文本反转(Textual Inversion):一种微调稳定扩散模型的方法
大型文本到图像稳定扩散模型已经展示了前所未有的能力,可以使用文本提示合成新场景。这些文本到图像模型提供了通过自然语言指导创作的自由。然而,它们的使用受到用户描述特定或独特场景、艺术创作或新实体产品的能力的限制。很多时候,用户被限制行使她的艺术自由来生成特定独特或新概念的图像。此外,使用新数据集为每个新概念重新训练模型非常困难且成本高昂。论文《提供了一种简单的方法来使得这种创作更自由。
2024-06-09 10:05:23 360
原创 生成式人工智能如何运作?
生成式人工智能是一种可用于创建内容(包括对话、故事、图像、视频和音乐)的人工智能。人工智能技术试图在图像识别、自然语言处理(NLP)和翻译等非传统计算任务中模仿人类智能。生成式人工智能是人工智能的发展方向。您可以训练其学习人类语言、编程语言、艺术、化学、生物学或任何复杂的主题。生成式人工智能可以重复使用训练数据来解决新问题。例如,学习英语词汇并根据其处理的字词创作一首诗。您的组织可以将生成式人工智能用于各种用途,例如聊天机器人、媒体创作以及产品开发和设计。
2024-06-08 11:45:34 2252
原创 生成式人工智能 - Stable Diffusion 都使用了哪些技术?
Stable Diffusion在2022年8月开源,是由慕尼黑大学的CompVis研究团队开发的生成式人工神经网络。该项目由初创公司StabilityAI、CompVis和Runway合作开发,并得到了EleutherAI和LAION的支持。截至2022年10月,StabilityAI已筹集了1.01亿美元的资金。Stable-Diffusion-WebUI是一个能够在浏览器上运行的网页版,它是一个具有跨时代意义的产品,让普通用户能够真正体验到AI绘画的无限魅力。
2024-06-08 11:08:22 396
顶级资源,布法罗大学深度学习超详细讲义英文版 共20章,三大部分:应用数学和机器学习基础、深度网络:现代实践、深度学习研究
2023-09-10
分别基于C#、C++的WinUI 3的demo体验项目
2023-06-07
Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传
2023-05-26
基于winform/c#/opencv实现的windows下使用的自动鼠标点击小软件
2022-08-22
医学影像分析+matlab+经典教学课件 介绍医学图像分析领域中使用的数学和统计技术,重点是计算机算法。
2022-06-13
winform + access数据库 + EntityFramework ORM映射
2022-06-01
winform + sqlite数据库 + EntityFramework ORM框架
2022-06-01
c++基础学习参考代码
2022-05-03
winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制功能完整代码
2022-05-03
winform+FileDialog扩展+自定义FileDialog窗口
2022-05-03
计算机视觉+对象类别检测+各种检测技术简述+PPT讲义
2022-04-28
牛津大学2022年计算机视觉课程,深度学习对象类别检测【讲义】
2022-03-30
基于华为P9实现视觉SLAM的低成本方案
2022-03-30
布法罗大学 + SLAM + 讲义PPT
2022-03-30
双击自定义后缀文件关联打开自己的WinForm应用程序
2021-03-27
paint.net-3.36(可运行版本).zip
2020-12-29
深度残差网络.zip
2020-12-26
windows版本nginx1.7 + rtmp模块
2020-12-05
自定义采集的图像数据集,浣熊、鱼、猫,用于训练神经网络
2020-12-02
ssd_mobilenet_v1_coco_2017_11_17.zip
2020-11-21
风景视频,用于图像处理,模拟长曝光
2020-10-26
百度地图切图工具ie内核、chromium内核.zip
2020-03-16
使用R语言的人多么?
2023-09-25
进行视频分析时,动态手势识别都有哪些技术路线?
2023-09-19
TA创建的收藏夹 TA关注的收藏夹
TA关注的人