自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学以致用 知行合一

吾生也有涯,而知也无涯,以有涯随无涯,殆己!

  • 博客(801)
  • 资源 (23)
  • 收藏
  • 关注

原创 异常检测学习笔记 二、基于角度和深度的极值分析技术

为您的数据选择合适的模型,选择一个概率阈值,低于该阈值将数据标记为异常,计算观察数据中每个实例的概率,低于阈值的情况属于异常情况。研究表明,世界杯比赛的进球数可以很好地近似于泊松分布。在一场比赛中进n球的概率由下式给出:,其中λ是每场比赛的平均进球数。对于现代世界杯赛事,λ=2.5,使用下面的概率表,我们看到有7或8个进球的比赛将被标记为异常[P(n)

2023-06-09 09:42:32 169

原创 机器学习笔记 - SAHI:切片辅助超推理与小目标检测的微调论文简读

对场景中的小物体和远处物体的检测是目标检测中的一个主要挑战。因为图像中的小物体缺乏足够的细节,使得传统检测器很难检测到它们。这里论文作者提出了一个名为切片辅助超推理(SAHI)的开源框架,为小对象检测提供了一个通用的切片辅助推理和微调管道。所提出的技术是通用的,因为它可以应用于任何可用的物体检测器之上,而无需任何微调。所提出的技术已与Detectron2、MMDetection和YOLOv5模型集成。

2023-06-08 21:03:41 135

原创 数字图像处理 基于OpenCV的景深融合算法

还有的思路是对图像序列中的每一张图像分别进行拉普拉斯金字塔拆分,提取出每一张图像的高频信息和低频信息,得到所述图像序列对应的高频信息集合和低频信息集合。然后根据所述高频信息集合得到合成后的高频信息,对所述低频信息集合进行导向滤波处理得到合成后的低频信息,根据所述合成后的高频信息和低频信息做拉普拉斯金字塔重构,得到一张超景深图像。这里声明了几个变量,ImMer是最终合成的图像,coll是中间处理的变量,Coll_Ori是保存原图像数据的变量,dstWidth目标图像宽度(一般都是与原始图像大小一致)。

2023-06-07 14:10:13 264

原创 机器学习笔记 - 通过视觉注意识别黑色素瘤论文简读

我们提出了一种基于注意力的黑色素瘤识别方法。与其他网络参数一起学习的注意力模块估计了高亮显示与病变分类相关的感兴趣图像区域的注意力图。与仅输出类标签相比,这些注意力映射提供了更易于解释的输出。此外,我们建议通过正则化具有感兴趣区域(ROI)的注意力图(例如,病变分割或皮肤镜特征)来利用先验信息。只要这种先验信息可用,就可以进一步细化分类性能和注意力图。据我们所知,我们是第一个为黑色素瘤识别引入具有正则化的端到端可训练注意力模块的人。我们在公共数据集上提供了定量和定性结果,以证明我们方法的有效性。

2023-06-06 20:38:36 155

原创 异常检测学习笔记 一、异常检测及基本统计

异常是指与其他数据有很大不同的数据。异常现象是“一种与其他观测结果大相径庭的观测结果,以至于人们怀疑它是由不同的机制产生的。”,也被称为“异常”或“离经叛道”。所有观测值 = 正常数据 + 异常值异常值 = 噪声 + 异常噪声 = 人们不感兴趣的异常值异常 = 人们关心的的异常值离群点。

2023-06-04 22:23:06 420

原创 时间序列教程 六、深度学习与时间序列分析结合

循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。循环神经网络将输入序列映射到预测输出。1、最常见的格式是多对一,它将输入序列映射到一个输出值2、每个时间步长的输入用于顺序更新RNN小区的隐藏状态或存储器。3、在对输入序列进行处理之后,使用隐藏状态信息来预测输出。RNN在时间序列预测中的应用RNN通常表示为一个循环。

2023-06-04 17:06:30 452

原创 视频压缩的工作原理

当你正在观看你最喜欢的节目,出现缓冲的时候,这是什么原因?当 Wi-Fi 带宽不足以下载传输视频流所需的数据时,就会发生缓冲。也有可能是视频网站发布了未压缩版本的视频文件,因此视频文件太大而无法流畅地流式传输。在高清模式下,图像分辨率为1080x1920像素,如果我们想象一个视频由许多这些图像组成,称为帧,那么 Wi-Fi 连接必须多快才能播放24帧/秒?答案是超1000兆,没错。由于每一帧都是48兆比特的数据,它实际上需要48×24每秒兆比特 (Mbps) 以观看视频24帧/秒。

2023-06-04 08:57:40 470

原创 什么是 IMU?惯性测量单元工作和应用

术语IMU代表“惯性测量单元”,我们用它来描述测量工具的集合。当安装在设备中时,这些工具可以捕获有关设备移动的数据。IMU 包含加速度计、陀螺仪和磁力计等传感器。

2023-06-01 18:19:41 533

原创 机器学习笔记 - 深度相机技术原理路线概览

机器学习、人工智能、嵌入式视觉和处理技术的进步帮助创新者构建了能够在几乎没有人工监督的情况下导航环境的自主机器。此类设备的示例包括AMR(自主移动机器人),自动拖拉机,自动叉车等。使这些设备真正自主需要它们能够在没有任何手动导航的情况下四处移动。这反过来又需要能够测量深度,以便进行映射、定位、路径规划以及障碍物检测和避开。这就是深度相机发挥作用的地方。深度感应摄像头使机器能够三维感知环境。由于深度摄像头提供的信息更丰富,它们在视觉引导机器人、检查和监控等应用中变得越来越重要。

2023-06-01 18:04:36 499

原创 机器学习笔记 - 使用稳定扩散模型创建图像

文本到图像生成是机器学习 (ML) 模型从文本描述生成图像的任务。目标是生成与描述非常匹配的图像,捕捉文本的细节和细微差别。这项任务具有挑战性,因为它要求模型理解文本的语义和语法,并生成逼真的图像。文本到图像生成在 AI 摄影、概念艺术、建筑建筑、时尚、视频游戏、平面设计等方面有许多实际应用。稳定扩散是一种文本到图像的模式,能够在几秒钟内创作出令人惊叹的艺术效果。这是一个速度和质量的突破,意味着它可以在消费者级别GPU上运行。

2023-06-01 14:32:16 493

原创 机器学习笔记 - 基于TensorFlow Lite的模型部署

TensorFlow Lite 是一个移动端库,可用于在移动设备、微控制器和其他边缘设备上部署模型。假设要执行图像分类任务。首先决定任务的模型。是要创建自定义模型;或者使用预训练模型,如 InceptionNet、MobileNet、NASNetLarge 等。又或者在预训练模型上应用迁移学习。模型训练完成后,您会将模型转换为 Tensorflow Lite 版本。

2023-05-30 13:11:52 339

原创 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型

语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1. 音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2. 预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3. 特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。

2023-05-29 20:21:54 528

原创 机器学习笔记 - 基于MATLAB的简单车牌识别系统参考代码

目标是开发一个自动化系统,该系统可以检测图像中的车牌,从车牌中提取字符,并使用光学字符识别(OCR)技术识别它们。车牌识别 (NPR) 是一种计算机视觉和模式识别技术,用于提取和解释车辆车牌上的字符。字符识别:然后使用相关性分析将提取的字符与一组预定义的模板进行匹配,从而能够识别车牌上的字母数字字符。模板创建:字母和数字模板是通过生成单个字符的二进制表示来创建的,这些字符可作为识别的参考。车牌检测:使用边缘检测、形态学运算和基于区域的分割技术定位输入图像中的车牌区域。

2023-05-28 22:37:24 454

原创 机器学习笔记 - Kaggle竞赛 基于SMAPE评估指标的TensorFlow决策森林预测帕金森病进展

比赛提供的AMP®-帕金森病进展预测数据集上的TensorFlow决策森林来训练基线随机森林模型。该模型必须预测MDS-UPDR评分,该评分衡量帕金森病患者的进展情况。这里首先将对数据进行一些预处理,使ML模型更容易从中学习。然后了解如何实现和使用本次比赛中使用的评估指标:SMAPE。决策森林是一个基于树的模型家族,包括随机森林和梯度提升树。在处理表格数据时,它们是比较好的起点,可以提供一个基线,以供下一步基于神经网络进行预测参考之用。

2023-05-27 09:55:47 410

转载 计算机视觉 工业相机镜头接口的种类

我怀疑这可能是由历史原因造成的:如果您留意一下不难发现,佳能公司生产的镜头基本上都是自动镜头(就是尾部带有电子触点的镜头,它的内部含有变焦和对焦的控制电机),这些镜头主要面向的就是持有单反的普通消费者。然而从本质上说,工业相机的成像原理和单反是相同的,它也包括相机本体和对应的镜头,只是我们在说“工业相机”的时候,通常是不包括其镜头的,它一般是下图这个样子,我们也称为“裸机”。M12接口,这个接口对应的数字12,指的是接口直径是12mm(所以,举一反三,M42的直径是42mm,M58是58mm)。

2023-05-26 10:59:29 26

原创 数字图像处理 基于傅里叶变换的图像拼接

这里讨论的算法主要是指应用于基于相机拍摄的显微镜的2D图像的拼接。基于2D显微图像的拼接通常只考虑x、y方向的位移。图像拼接在图像处理中应用广泛。特别是对高分辨率标本成像的需求日益增加。通常,这些标本不适合显微镜的视野。为了克服这一缺点,使用移动样品的电动载物台来创建整个样品的平铺扫描。显微镜载物台提供的物理坐标不够精确,无法从单个图像堆栈重建(“拼接”)整个图像。图像拼接的图像配准环节的技术路线通常分两种,第一种是基于输入图像中检测并提取关键点进行匹配等。

2023-05-26 09:19:18 436

原创 数字图像处理 使用C#进行图像处理八 Unsharp Masking

Unsharp Masking是一种线性图像处理技术,用于锐化图像。清晰的细节被识别为两者之间的差异原始图像及其模糊版本。模糊步骤可以使用任何图像滤波方法,例如中值滤波, 但传统上使用高斯滤波器。半径参数在 非锐化掩蔽滤波器是指高斯滤波器的Σ参数。这里的代码主要针对RGBA格式的图像。下图显示了不同半径和数量参数的效果。

2023-05-23 15:03:02 328

原创 计算机视觉 - 机器视觉光源选型参考

目前没有一个通用的机器视觉照明系统,可以应对不同的检测要求,因此针对每个特定的案例,都需要设计适应的照明装置,以达到最佳效果。机器视觉光源有多种类别,每种类别的光源又有多种型号,在确定类别之后还要进行选型,下面就介绍不同类别光源的选型方法。

2023-05-21 17:11:13 306

原创 机器学习笔记 - windows基于TensorRT的UNet推理部署

NVIDIA TensorRT是一个用于高性能深度学习推理的平台。TensorRT适用于使用CUDA平台的所有NVIDIA GPU。所以如果需要基于TensorRT部署,至少需要一个NVIDIA显卡,算力5.0以上,比Maxwell更新的架构,可以参考下表。需要安装cuda、cudnn。还用到了到了OpenCV,这里是基于TensorRT的c++的api。

2023-05-20 15:38:45 452

原创 机器学习笔记 - 利用自动编码器神经网络构建图像去噪器

传统的图像噪声去除主要是基于各种滤波器,但它们不是特定于数据的,因此可能会损失很多图像的细节,或者噪声去除的效果不是很理想。基于神经网络的自动编码器可以用于学习数据集的噪声去除滤波器。 关于自动编码器的介绍,可以参考下面的链接。https://skydance.blog.csdn.net/article/details/123567960https://skydance.blog.csdn.net/article/details/123567960 一个典型的自动编码器

2023-05-18 11:24:02 269

原创 机器学习笔记 - 微型不平衡数据集的处理思路参考

1、上面说的四种方法,可以做为参考,特别是对于数据量非常小的数据集(比如某一类数据只有几百条那种)。2、实际工作中,还是那缺陷检测的分类问题考虑,很多时候很难像区别猫狗一样把类别分清晰,所以二分类未必是好选择,特别是对于不平衡的数据。3、对于上一条说的数据不好分类的时候,可以考虑人工扩充特征,然后进行人工分类,不需要过多的数据量,比如我们把数据粗分为5类,那么数据量少的类别的数据可能只有几百条,数据量大的类别我们可以控制在千条以内(但是要整理共性)。

2023-05-17 21:36:50 315

原创 时间序列教程 五、ARMA和ARIMA模型回顾及卡尔曼滤波器

在处理ARMA模型时需要记住的一些事项:(1)假设时间序列是静止的。这里我们将回顾并将这两种模型类型组合成三种更复杂的时间序列模型:ARMA、ARIMA和SARIMA。MA模型:指定序列的当前值线性地取决于序列的平均值和一组先前(观察到的)白噪声误差项。AR模型:指定序列的当前值线性地取决于它自己以前的值和随机项(一个不完全可预测的项)。P、 D和Q表示与P、D和Q相同的值,但它们适用于整个季节(例如,每年)。此模型用于删除季节性组件。SARIMA模型表示为SARIMA(p,d,q)(p,d,q)。

2023-05-16 12:04:17 154

原创 机器学习笔记 在自定义数据集上训练 YOLOv8 目标检测器

YOLOv8是Ultralytics开发的YOLO对象检测,分类和分割模型的最新版本。在编写本教程时,YOLOv8 是最先进的尖端模型。与以前的版本在前身 YOLO 模型的基础上构建和改进一样,YOLOv8 也建立在以前的 YOLO 版本的成功基础上。YOLOv8 中的新功能和改进提高了性能和准确性,使其成为最实用的对象检测模型。YOLOv8的一个关键特性是它的可扩展性。它被设计为一个框架,支持所有以前版本的 YOLO,可以轻松地在版本之间切换并对其性能进行基准测试。

2023-05-05 08:53:08 495

原创 机器学习笔记 Segment Anything用于图像分割的通用大模型

人工智能中的基础模型正变得越来越重要。它们被定义为在大量数据上训练的大型人工智能模型,可以适应广泛的任务。基础模型的早期例子是大型语言模型(LLM),如GPT和BERT。随后,该行业也看到了同样的想法被应用于多模态基础模型,如DALLE、CLIP等。基础模型这个术语开始在NLP领域得到实践并正在进一步加快步伐。Segment Anything是Meta的一个项目,旨在为图像分割的基础模型构建起点,其野心也可见一斑。该项目主要包含两个重要组件:1、用于图像分割的大型数据集。

2023-05-03 22:12:09 678 2

原创 机器学习笔记 使用PPOCRLabel标注自己的OCR数据集

运行的时候,直接激活安装了PPOCRLabel的环境后,输入PPOCRLabel回车即可运行,不过PPOCRLabel依赖PyQt5,所以会要求安装PyQt5,按要求安装或者提前安装即可。每行代表一张图象,如果需要自行读取的时候,可以按行读取,图像路径和数组之间是\t进行分隔的,可以使用\t进行分割,数组是json格式,可以读取并解析。下面的代码是标记一张图片的数据,包含图像相对路径以及标记的坐标、文字等组成的数组。在上面标注完成之后,会生成如下的文件,有用的实际上就是Label.txt。

2023-05-03 16:40:51 656

原创 机器学习笔记 计算机视觉中的注意机制综述论文简读

人类视觉系统可以自然高效地找到复杂场景中的重要的区域,受到这种现象的启发,注意力机制(Attention Mechanisms)被引入到计算机视觉系统中。注意力机制已经在计算机视觉的各种任务(如:图像识别、目标检测、语义分割、动作识别、图像生成、三维视觉等)中取得了巨大的成功。但是,研究人员在研究不同任务的注意力机制的时候,往往注重的是任务本身,而忽略了注意力机制本身就是一个研究方向,是一个尝试用计算机视觉系统模拟人类视觉系统的研究方向。

2023-05-02 10:41:14 327

原创 机器学习笔记 图像特征提取器(卷积变体)的技术发展与演变

图像特征提取器是可用于从图像中学习表示的函数或模块。最常见的特征提取器类型是卷积,其中内核在图像上滑动,允许参数共享和平移不变性。在深度学习技术的快速发展过程中,基于卷积也演变出来了若干新技术由于图像特征的提取,这里进行了一下简单梳理,一是加强了解,二是备忘。下面的清单每项都只是一个概念,因为每个概念都产生了若干论文。

2023-05-01 18:46:45 530

原创 机器学习笔记 基于深度学习的边缘检测

边缘检测是视觉工作中十分常用的技术,传统边缘检测已经包含了很多经典的诸如Canny、Robert等等,都是各有擅场,不过有一点问题,就是很多参数需要人工调试,所以深度学习研究人员提出了基于卷积神经网络的边缘检测算法。即HED,该算法通过利用全卷积神经网络和深度监督网络的深度学习模型来执行图像到图像的预测。HED自动学习丰富的层次表示,对于解决边缘和对象边界检测中具有挑战性的模糊性是很重要的。

2023-05-01 10:51:33 583

原创 机器学习笔记 基于OpenCV的文本检测和识别模块

east是一种高效准确的场景文本检测器,网络模型如下。该模型是一个适用于文本检测的全卷积神经网络,输出单词或文本行的密集每像素预测。这就省去了诸如候选建议、文本区域形成和单词分割等中间步骤。后处理步骤仅包括对预测的几何形状进行阈值处理和NMS。论文地址论文对应实现的地址。

2023-04-30 21:42:57 402

原创 机器学习笔记 使用paddleocr推理时的参数设置详解(陆续整理中)

paddleocr的整体架构跟它的野心一样庞大,所以paddleocr的参数就必然很多,官方文档对于参数的描述感觉也不够十分清晰,在刚开始用的时候甚至不知道有哪些参数可以设置,设置之后大概有什么样的影响。因为项目中使用到了,所以对推理时的参数进行了一番探索。

2023-04-23 22:27:33 608

原创 机器学习笔记 - MediaPipe结合OpenCV分析人体标准运动姿势

这里我们要进行一项具体的姿势估计,深蹲姿势的估计。如果为了完成这项任务,我们可以利用基于深度学习的人体姿势估计算法比如估计人类姿势的流行框架包括OpenPose,AlphaPose,Yolov7,MediaPipe等。在设计应用程序来分析各种健身姿势时,可以考虑使用正面图像,也可以使用左右两侧的图像,因此可以利用各种地标点的坡度和角度,例如膝臀部和膝盖线之间的角度等。在之前的文章中,对于MediaPipe进行了初步了解,并对结合OpenCV进行人体姿势估计的技术的处理思路进行看了一些探讨。

2023-04-22 10:26:05 267

原创 机器学习笔记 PyTorch2.0中的新功能概览

eager会在运行时立即执行操作。但是,它无法充分利用 GPU 等硬件加速器的功能。Graph执行在运行之前构建所有操作和操作数的图形。这样的执行比eager要快得多,因为可以优化形成的图形以利用硬件加速器的功能。PyTorch 2.0 版本以较低的内存使用率更快地训练深度神经网络,并支持Graph。此外,PyTorch 2.0旨在利用硬件加速器的功能,并在eager模式下提供更好的加速。

2023-04-19 14:48:32 180

原创 win11破解以开启多用户同时登陆

背景就是有一台电脑,windows11的专业版,上面有一套软件,但是这台电脑还有人需要用。然后再次管理员运行RDPConf.exe,全绿色就好了(如果还没有好,尝试从下面网址下载最新的rdpwrap.ini文件,再次替换下)。至此设置基本完成,但是这两个系统用户还是不能同时登陆,如果远程登陆就会把当前的用户踢下去,反之亦然。搜索远程桌面,点击远程桌面用户,添加上一步新建好的用户,我这里是添加了一个邮箱,就是微软账号。找到其他用户,添加用户,我这里添加的是微软用户的账户。,远程连接的,测试ok。

2023-04-17 15:55:21 1796

原创 时间序列教程 四、自回归和移动平均模型

如果PACF在给定滞后下急剧下降,或者第一滞后自相关为正,则使用阶数p等于急剧下降前滞后的AR模型。如果ACF在给定滞后下急剧下降,或者第一滞后自相关为负,则使用阶数q等于急剧下降前滞后的MA模型。MA模型在概念上是该序列的当前值相对于该序列的一个或多个先前值的白噪声的线性回归。自回归模型AR模型是该序列的当前值相对于该序列的一个或多个先前值的线性回归。对单变量时间序列建模的另一种常见方法是移动平均(MA)模型。自回归模型(AR)是对单变量时间序列建模的一种常见方法。符号AR(p)表示p阶的自回归模型。

2023-04-16 20:26:37 303

原创 机器学习笔记 c#调用python脚本文件进行模型推理

很多的基于python的深度学习的库或者框架,不只是进行推理,还包含推理前的图像预处理和推理后的数据解析的程序。所以在使用的时候如果不基于python使用,那就还需要很多额外工作,还需要自行编写代码处理推理前的图像处理和推理后的数据解析等等。直接上代码,下面的代码主要是基于c#的Process,直接调用python.exe,执行py脚本。1、如果是服务器部署,可能需要注意python的环境,使用的库对于不同cpu的支持情况(有些库对于一些非桌面的cpu可能支持不是很好=)。下面说一下基于c#的调用。

2023-04-15 21:54:05 416

原创 Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传

之所以要用到provider,是因为从Android7.0开始,就不允许在 App 间,使用 file:// 的方式,传递一个 File ,否则就会抛出异常,而provider的作用恰好就是用过 content://的模式替换掉 file://,看上去只是换了个前缀,但其实是有真实路径转为了虚拟路径。再andorid新版本里面,上面申请了权限之后,还是需要动态在申请权限,所以再需要用到的界面的onCreate方法里面添加如下代码,进行申请。这是一个完整的帮助类,可以基于Uri获取绝对路径。

2023-04-12 10:35:16 853 4

原创 时间序列教程 三、对时间序列数据进行平滑处理(续)

具体来说,让我们去掉最后5个观察结果,并将它们作为一个测试集。双指数平滑具有预测趋势的能力。双指数平滑具有预测趋势的能力。但是它没有体现季节性?为此,我们需要三次指数平滑。三指数平滑具有预测趋势和季节性的能力。到目前为止,我们一直在研究的是指数加权平均平滑。我们将首先对训练集应用单指数平滑,并预测前5个观测值。单指数平滑产生的值与预测范围内推出的值相同。你的数据有趋势但没有季节性–使用双指数平滑。你的数据有趋势性和季节性–使用三重指数平滑。你的数据没有趋势–使用单指数平滑。因此,我们考虑双指数平滑。

2023-04-11 16:46:14 405

原创 时间序列教程 三、对时间序列数据进行平滑处理

最简单的的解决方案是计算平均值,并预测未来的值,但是这个方法并不严谨。有时称为单指数平滑,第一步还是选择一个滑动窗口,这里依然是3,然后计算平均值,但是不同的是,我们对于三个数值应用指数权重。因为简单平均值不是一种好办法,所以数据科学家提出了一种称为移动平均的技术,它对数据的局部变化具有更大的敏感性。从上面的图片上看,简单的移动平均技术效果也不错的样子,但是真的是最好的了么?使用MSE的目的是为了比较,我们可以比较不同模型的估计结果,量化比较。平滑是一个重要的工具,可以让你做出未来的预测。

2023-04-10 20:04:21 799 3

原创 时间序列教程 二、识别和转换非平稳时间序列

虽然有更先进的时间序列模型可以处理非平稳数据,但是了解关于平稳性的基础知识是十分必要的。在两个不同区域中具有不同方差的时间序列是非平稳序列。假设一个给定的时间序列具有滞后1的自相关。计算一段时间内的平均值和方差是辨别序列是否平稳的一种有用方法。在建模之前,可以应用变换将非平稳时间序列转换为平稳时间序列。如果看到一个近似正态的分布,表明你的时间序列是平稳的。如果你看到一个非正态分布,表明你的时间序列是非平稳的。平稳时间序列在整个序列中具有恒定的自相关结构。具有趋势性或季节性成分的时间序列是非平稳序列。

2023-04-06 19:17:46 377

原创 自然机器人最新发布:智能流程助手,与GPT深度融合

自然机器人一直秉持着客户第一、自主创新的企业文化,在AGI技术发展的助力下,自然机器人离实现让自动化成为人们的基本技能这一使命的距离更近了一步。自然机器人通过不断探索与研究,还在继续产生更多创新和有价值的场景,以帮助客户进一步实现革命级价值。

2023-04-04 13:43:38 5032 1

分别基于C#、C++的WinUI 3的demo体验项目

显示如何从图片库中检索照片,然后使用各种照片效果编辑所选图像。 用于查看和编辑图像文件的迷你应用程序,演示Windows应用程序SDK应用程序的XAML布局、数据绑定和UI自定义功能。照片编辑器向您展示如何从**图片**库中检索照片,然后使用各种照片效果编辑所选图像。在示例的源代码中,您将看到许多常见的做法,如[数据绑定]和[异步编程]。 此示例针对Windows应用程序SDK进行测试以及Visual Studio 2022。

2023-06-07

Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传

参考链接:https://skydance.blog.csdn.net/article/details/129745348 一、权限问题 二、调用相机 1、声明provider 首先,我们需要在主配置文件中声明provider,与activity同级别。之所以要用到provider,是因为从Android7.0开始,就不允许在 App 间,使用 file:// 的方式,传递一个 File ,否则就会抛出异常,而provider的作用恰好就是用过 content://的模式替换掉 file://,看上去只是换了个前缀,但其实是有真实路径转为了虚拟路径。 2、调用相机 首先创建一个文件,用于保存拍照图像,然后根据不同系统版本获取Uri,传递给Intent,然后调起相机(可以考虑将outputImage、imageUri设置为全局变量)。 3、处理回调 使用BitmapFactory读取imageUri,得到bitmap,然后进行一些压缩,然后显示。

2023-05-26

基于winform/c#/opencv实现的windows下使用的自动鼠标点击小软件

【2022/08/22】版本v1.0 【功能描述】 目前实现两种点击模式。 间隔模式:一句话描述,按设置好的间隔时间鼠标左键单击用户设定的位置。 图片模式:一句话描述,用户截图想要识别的图片,上传到软件,然后软件按设置好的间隔时间识别屏幕是否出现了用户上传的图片,如果识别到了,则鼠标左键单击用户设定的位置。 后面会增加一些点击模式,比如文字识别,颜色识别等。 【使用要点】 1、不能进行屏幕缩放,就是《显示设置》-《缩放和布局》那里的缩放,需要使用百分之百,否则定位不准确。 2、快捷键f1为确认功能,比如选择鼠标点击位置,f1进行最终确认。 3、快捷键f5为开始运行。 4、快捷键f6为结束运行。 【文章链接】 更新细节等会记录在下面文章地址,如果不能访问,可能就是刚更新审核中,耐心等待即可。 https://skydance.blog.csdn.net/article/details/126441719 【如有个性化需求】可以私信我独立开发,费用具体谈。 【想增加通用功能】也可以私信我描述清楚需求,如果不是十分复杂,也会进行功能增加之后更新版本。

2022-08-22

医学影像分析+matlab+经典教学课件 介绍医学图像分析领域中使用的数学和统计技术,重点是计算机算法。

1、MATLAB 是教学语言。 2、介绍医学图像分析领域中使用的数学和统计技术,重点是计算机实现。我们将研究基于使用各种模型的算法和策略来解决以下医学成像问题:表示、可视化、特征提取、去噪、图像配准、形态测量(可变形)、量化和验证。 3、包含以下细节内容:数字图像数据、随机场、希尔伯特空间、傅里叶分析、小波、线性和非线性滤波器、时间序列、多元技术、模式识别、形状建模、可变形模板、曲线和曲面几何、有限元方法 (FEM)、相似性度量、图像模拟、图像配准(2D 表面和 3D 体积)、统计参数映射 (SPM)、多重比较校正、计算统计、验证技术。 4、一些小节主题摘抄 分割是根据某些标准将数字图像划分为多个区域。 fMRI 示例:杏仁核中的功能性 MRI 显示实验 皮尔逊积矩相关系数 复杂图像重建回顾 图像复杂性可以表征图像和潜在的临床状况(癌症的存在、阿尔茨海默病)。 医学影像分析流程: (1)图像采集 MRI、fMRI、PET、CT、EEG、MEG 等。 (2)将图像导入计算机DIACOM、MINC、ANALYZE、BRIK。 (3)基于图像强度的分割 / 可变形曲线和曲面 (4)图像配准

2022-06-13

winform + access数据库 + EntityFramework ORM映射

压缩包内包含示例程序、引擎等等 1、winform桌面程序使用access数据库的化,如果用户的电脑里面没有安装最新的access软件(应该是2019版本以上)或者不安装access,就需要安装accessdatabaseengine引擎。 2、accessdatabaseengine引擎分为32位和64位。 3、如果要使用EntityFramework还需要JetEntityFrameworkProvider,这是第三方github提供的软件,在NuGet上也提供了,不过它仅支持32位的,如果想要使用64位的,可以下载源码重新编译dll。 4、上面说的accessdatabaseengine引擎和JetEntityFrameworkProvider要配套,要么都是32要么都是64位的。 5、winform软件启动的时候连接access数据库的时候,启动有点慢,经过抓包测试过,慢的原因是会访问微软的网站,不过网站已经访问不通了所以很慢,如果断网启动就会很快。另一个不一定靠谱的办法是打开office软件更改信任中心的隐私选项,给关闭掉,不让office访问联机服务和信息反馈。

2022-06-01

winform + sqlite数据库 + EntityFramework ORM框架

1、基于.Net Framework4.8的桌面窗口程序。 2、代码演示如何使用sqlite数据库。 3、基于EntityFramework的ORM框架。 4、可以使用SQLite Expert Personal软件查看sqlite数据库文件,数据库文件名为sqlite.db3,位于bin/debug文件夹下。 5、数据库连接描述connectionStrings,再App.config文件内配置。 6、主窗口内放置了一个listview,进入界面时会读取表内数据,展示在listview中,另外界面有两个按钮,一个添加,一个删除,调用我们的EntityFramework的层结构,进行存储或删除。 7、在入口文件方法内,使用GetItemCollection方法进行EF暖机操作,以避免第一次度数据库过慢,不过这个方法是否有效需要自行感受,数据库越复杂可能感受越明显。 8、需要NuGet引入EntityFramework、System.Data.SQLite.Core、System.Data.SQLite.EF6、System.Data.SQLite.Linq等相关的库。

2022-06-01

c++基础学习参考代码

1、标识符、关键字、常量、变量、数据类型、指针、运算符、字符串处理等全部基础点。 2、包含所有流程语句,简单语句、复合语句、ifelse、循环..... 3、函数、内联、重载、模板函数、作用域、命名空间等 4、类和对象、多继承、虚继承、嵌套类、局部类、类模板 5、窗口设置、通用对象、设计媒体播放器、图形设备接口、文件操作、GDI+、程序调试、打印相关、注册表操作、ADO数据库编程、多线程程序设计、动态链接库、套接字socket编程。 6、项目实战局域网监控系统、垃圾文件清理工具、视频聊天软件、人事考勤管理系统等。

2022-05-03

winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制功能完整代码

winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制。 同时还有保存、恢复等功能,可以根据需求自定义扩展。、 抽象基类如下所示, public abstract class DrawObject { #region Members //是否被选中 private bool selected; //绘制对象的颜色 private Color color; //绘制对象的线条宽度 private int penWidth; //绘制对象的id标识 int id; // Last used property values (may be kept in the Registry) private static Color lastUsedColor = Color.Black;

2022-05-03

winform+FileDialog扩展+自定义FileDialog窗口

内容概要:使用winform原生开发的自定义FileDialog窗口控件,再系统FileDialog的基础上进行扩展。 基于UserControl。 public partial class FileDialogControlBase : UserControl { #region Delegates public delegate void PathChangedEventHandler(IWin32Window sender, string filePath); public delegate void FilterChangedEventHandler(IWin32Window sender, int index); #endregion }

2022-05-03

计算机视觉+对象类别检测+各种检测技术简述+PPT讲义

1、通过滑动窗口分类检测 2、多尺度(和纵横比)来检测不同大小的对象 3、困难负例挖掘的重要性(由于类不平衡) 4、通过仅选择窗口子集来加速训练和推理 5、使用 CNN 进行对象类别检测 两阶段方法:Faster R CNN 一段式方法:SSD 评价数据集:COCO 6、涉及最先进的方法最近的改进 模块:特征金字塔网络、焦点损失 培训:复制粘贴数据增强 架构:RetinaNet、CenterNet、FCOS、Mask R CNN、DETR、Swin 7、实例分割 8、使用移位窗口的分层视觉转换器 9、DETR:使用变压器进行端到端对象检测 10、复制粘贴和大规模抖动数据增强 11、对象检测、分割、实例分割等的新基准数据集: LVIS(Large Vocabulary Instance Segmentation):1200个类别,164K 图像,220万个实例分割

2022-04-28

牛津大学2022年计算机视觉课程,深度学习对象类别检测【讲义】

主要涵盖以下内容,并介绍最先进的网络和架构 1、视觉场景理解,对象类别、身份、属性、活动、关系、位置…… 2、任务:分类、定位、分割 3、视觉问答、对象跟踪 4、滑动窗口检测器原理、训练滑动窗口检测器、加速推理 5、两阶段和一阶段网络 5、imagenet、AlexNet、VGG16、ResNet、Squeeze & Excitation 、Faster RCNN 6、“Anchors”:预定义的候选区域 7、RPN:区域提案网络、Anchor Box、Multiple Anchors、正负训练区域 8、大规模数据增强 9、DETR: End to end object detection using transformer

2022-03-30

基于华为P9实现视觉SLAM的低成本方案

关注 SLAM 算法在 HUAWEI P9 上的可能性。目标是在 Android 平台上开发移动应用程序。该应用程序应该能够使用手机中嵌入的传感器(例如摄像头、陀螺仪和加速度计)来绘制、建模和定位周围环境,同时将手机随身携带。我们系统的核心是视觉 SLAM 算法。基于精度和手机存储容量,我们选择ORB-SLAM作为框架。华为 P9 上的一个摄像头、一个加速度计和一个陀螺仪作为输入设备。应用紧密耦合的视觉惯性传感器融合算法来获得基于视觉和惯性输入的相机位姿估计,从而能够在慢动作和拥挤场景中稳健地工作。我们还在计算机上离线应用 3D 地图重建来可视化 SLAM 结果。总的来说,我们的应用可以在华为P9上实现SLAM,离线3D地图重建系统可以可视化。峰值 CPU 使用率超出我们的预期 1%。所有其他规范,包括本地化错误、本地化时间、内存使用峰值、互联网带宽使用、用户学习时间和成本均已满足。该项目预示着基于智能手机的自动驾驶汽车的可能。

2022-03-30

布法罗大学 + SLAM + 讲义PPT

布法罗大学SLAM讲义PPT下载。 1、SLAM 是一种用于在未知环境或已知环境中构建地图同时跟踪当前位置的技术。 2、为了构建地图,我们必须知道我们的位置;为了确定我们的位置,我们需要一张地图! 3、同步定位与地图构建 (SLAM) 是自动驾驶汽车所用的一种技术,您不仅可以用它构建地图,还可同时在该地图上定位您的车辆。 4、大致说来,实现 SLAM 需要两类技术。一类技术是传感器信号处理(包括前端处理),这类技术在很大程度上取决于所用的传感器。另一类技术是位姿图优化(包括后端处理),这类技术与传感器无关。 5、相关硬件:移动机器人、距离测量装置 6、SLAM 是 SfM(运动恢复结构:Structure from Motion)的一种实时版本。 7、目前,SLAM技术被广泛运用于机器人、无人机、无人驾驶、AR、VR等领域,依靠传感器可实现机器的自主定位、建图、路径规划等功能。 8、

2022-03-30

着色论文及算法(含matlab代码)

这里的算法基于一个简单的前提,即时空附近具有相似灰度级的像素也应该具有相似的颜色。适合用于视频和图像着色处理。

2021-08-04

双击自定义后缀文件关联打开自己的WinForm应用程序

主要是实现了以下功能,适合初学Windows桌面应用开发的人员: 1、程序运行时请求管理员权限。 1、程序运行时写入注册表。 (1)关联自定义后缀文件关联到自己的应用。 (2)指定自定义后缀文件的logo。 2、双击自定义后缀文件开自己的应用,并传递文件路径参数到应用内。 3、拖拽自定义文件到主窗口,如果进行获取文件路径。

2021-03-27

paint.net-3.36(可运行版本).zip

1、Paint.NET是一个图像和照片处理软件,它由华盛顿州立大学的学生开发和维护并由微软公司提供项目指导,早期定位于MS Paint的免费替代软件,现在逐渐发展为一个功能强大且易用的的图像和照片处理软件,支持图层,无限制的历史记录,特效,和许多实用工具,并且开放源代码和完全免费,界面看起来有点像Photoshop,该软件的开发语言是C#。 2、最后开源的版本应该就是3.3.6,目前i已经不再开源。 3、支持VS2019运行

2020-12-29

深度残差网络.zip

当Microsoft Research发布用于图像识别的深度残差学习时,深度残差网络席卷了深度学习领域。这些网络在ImageNet和COCO 2015竞赛的所有五个主要赛道中均获得了第一名的入围作品,这些竞赛涵盖了图像分类,对象检测和语义分割。此后,ResNets的鲁棒性已被各种视觉识别任务和涉及语音和语言的非视觉任务证明。 压缩包内包含以下参考文档: 1、深度残差学习以进行图像识别— ResNet(Microsoft Research) 2、广泛的残留网络(巴黎埃斯特大学,巴黎高等技术学校) 3、聚集残余转换为深层神经网络- ResNeXt(Facebook的AI研究)

2020-12-26

C++语言编写坦克大战源代码下载(vs2019可运行)

C++语言编写坦克大战小游戏的源代码,控制台运行的,代码很简单,适合新手看着玩,可以用vs2019运行着玩耍。

2020-12-14

K近邻算法进行手写识别的数据集

K近邻算法进行手写识别的数据集,包含手写数字的训练集和测试集,为32*32的数据集合,在代码里转为1024的向量

2020-12-13

windows版本nginx1.7 + rtmp模块

windows下搭建nginx-rtmp服务器,可用来测试obs推流,其它端进行拉流观看。使用方法双击nginx.exe即可。

2020-12-05

Caffe面部检测模型

Caffe面部检测模型,包含res10_300x300_ssd_iter_140000.caffemodel,deploy.prototxt

2020-12-05

自定义采集的图像数据集,浣熊、鱼、猫,用于训练神经网络

自定义采集的图像数据集,浣熊、鱼、猫,用于尝试用自己的数据进行神经网络的训练,提供给大家,虽然质量一般,但是不需要自己一张张去弄了。

2020-12-02

ssd_mobilenet_v1_coco_2017_11_17.zip

tensorflow训练的ssd_mobilenet_v1_coco_2017_11_17目标检测、图像分类模型。

2020-11-21

风景视频,用于图像处理,模拟长曝光

用于图像处理,模拟长曝光,这里使用Python和OpenCV从输入视频中自动创建长时间曝光的图像。给定输入视频,将所有帧平均在一起(平均加权)以创建长时间曝光效果。

2020-10-26

SocketServer.zip

使用supersocket 1.6的可自定义结束符的短连接demo实例,使用windows窗口运行。

2020-05-10

百度地图切图工具ie内核、chromium内核.zip

【2022-08-20更新】之前使用的winform的webbrowser控件,可能会出现兼容性问题,导致地图不显示,现已经更新为webview2替代原webbrowser控件。 【备注】下载后请自行修改html文件夹下的在线地图.html,第7行的ak为自己的ak(注意:因为百度地图api更新,需要申请浏览器端的ak)。 【功能描述】 1、此小软件可以用于生成百度瓦片图层生成。 2、支持多项目管理,可以为每次切图创建项目,方便管理 3、支持从地图上多选所需图片,程序自动下载合并为一张图片,自动记录缩放级别和中心点 4、可根据程序合并的图片,精确处理自己的图片 5、程序支持精准的切割瓦片图并生成demo 6、最高支持百度地图缩放级别20级

2020-03-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除