- 博客(801)
- 资源 (23)
- 收藏
- 关注
原创 异常检测学习笔记 二、基于角度和深度的极值分析技术
为您的数据选择合适的模型,选择一个概率阈值,低于该阈值将数据标记为异常,计算观察数据中每个实例的概率,低于阈值的情况属于异常情况。研究表明,世界杯比赛的进球数可以很好地近似于泊松分布。在一场比赛中进n球的概率由下式给出:,其中λ是每场比赛的平均进球数。对于现代世界杯赛事,λ=2.5,使用下面的概率表,我们看到有7或8个进球的比赛将被标记为异常[P(n)
2023-06-09 09:42:32
169
原创 机器学习笔记 - SAHI:切片辅助超推理与小目标检测的微调论文简读
对场景中的小物体和远处物体的检测是目标检测中的一个主要挑战。因为图像中的小物体缺乏足够的细节,使得传统检测器很难检测到它们。这里论文作者提出了一个名为切片辅助超推理(SAHI)的开源框架,为小对象检测提供了一个通用的切片辅助推理和微调管道。所提出的技术是通用的,因为它可以应用于任何可用的物体检测器之上,而无需任何微调。所提出的技术已与Detectron2、MMDetection和YOLOv5模型集成。
2023-06-08 21:03:41
135
原创 数字图像处理 基于OpenCV的景深融合算法
还有的思路是对图像序列中的每一张图像分别进行拉普拉斯金字塔拆分,提取出每一张图像的高频信息和低频信息,得到所述图像序列对应的高频信息集合和低频信息集合。然后根据所述高频信息集合得到合成后的高频信息,对所述低频信息集合进行导向滤波处理得到合成后的低频信息,根据所述合成后的高频信息和低频信息做拉普拉斯金字塔重构,得到一张超景深图像。这里声明了几个变量,ImMer是最终合成的图像,coll是中间处理的变量,Coll_Ori是保存原图像数据的变量,dstWidth目标图像宽度(一般都是与原始图像大小一致)。
2023-06-07 14:10:13
264
原创 机器学习笔记 - 通过视觉注意识别黑色素瘤论文简读
我们提出了一种基于注意力的黑色素瘤识别方法。与其他网络参数一起学习的注意力模块估计了高亮显示与病变分类相关的感兴趣图像区域的注意力图。与仅输出类标签相比,这些注意力映射提供了更易于解释的输出。此外,我们建议通过正则化具有感兴趣区域(ROI)的注意力图(例如,病变分割或皮肤镜特征)来利用先验信息。只要这种先验信息可用,就可以进一步细化分类性能和注意力图。据我们所知,我们是第一个为黑色素瘤识别引入具有正则化的端到端可训练注意力模块的人。我们在公共数据集上提供了定量和定性结果,以证明我们方法的有效性。
2023-06-06 20:38:36
155
原创 异常检测学习笔记 一、异常检测及基本统计
异常是指与其他数据有很大不同的数据。异常现象是“一种与其他观测结果大相径庭的观测结果,以至于人们怀疑它是由不同的机制产生的。”,也被称为“异常”或“离经叛道”。所有观测值 = 正常数据 + 异常值异常值 = 噪声 + 异常噪声 = 人们不感兴趣的异常值异常 = 人们关心的的异常值离群点。
2023-06-04 22:23:06
420
原创 时间序列教程 六、深度学习与时间序列分析结合
循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。循环神经网络将输入序列映射到预测输出。1、最常见的格式是多对一,它将输入序列映射到一个输出值2、每个时间步长的输入用于顺序更新RNN小区的隐藏状态或存储器。3、在对输入序列进行处理之后,使用隐藏状态信息来预测输出。RNN在时间序列预测中的应用RNN通常表示为一个循环。
2023-06-04 17:06:30
452
原创 视频压缩的工作原理
当你正在观看你最喜欢的节目,出现缓冲的时候,这是什么原因?当 Wi-Fi 带宽不足以下载传输视频流所需的数据时,就会发生缓冲。也有可能是视频网站发布了未压缩版本的视频文件,因此视频文件太大而无法流畅地流式传输。在高清模式下,图像分辨率为1080x1920像素,如果我们想象一个视频由许多这些图像组成,称为帧,那么 Wi-Fi 连接必须多快才能播放24帧/秒?答案是超1000兆,没错。由于每一帧都是48兆比特的数据,它实际上需要48×24每秒兆比特 (Mbps) 以观看视频24帧/秒。
2023-06-04 08:57:40
470
原创 什么是 IMU?惯性测量单元工作和应用
术语IMU代表“惯性测量单元”,我们用它来描述测量工具的集合。当安装在设备中时,这些工具可以捕获有关设备移动的数据。IMU 包含加速度计、陀螺仪和磁力计等传感器。
2023-06-01 18:19:41
533
原创 机器学习笔记 - 深度相机技术原理路线概览
机器学习、人工智能、嵌入式视觉和处理技术的进步帮助创新者构建了能够在几乎没有人工监督的情况下导航环境的自主机器。此类设备的示例包括AMR(自主移动机器人),自动拖拉机,自动叉车等。使这些设备真正自主需要它们能够在没有任何手动导航的情况下四处移动。这反过来又需要能够测量深度,以便进行映射、定位、路径规划以及障碍物检测和避开。这就是深度相机发挥作用的地方。深度感应摄像头使机器能够三维感知环境。由于深度摄像头提供的信息更丰富,它们在视觉引导机器人、检查和监控等应用中变得越来越重要。
2023-06-01 18:04:36
499
原创 机器学习笔记 - 使用稳定扩散模型创建图像
文本到图像生成是机器学习 (ML) 模型从文本描述生成图像的任务。目标是生成与描述非常匹配的图像,捕捉文本的细节和细微差别。这项任务具有挑战性,因为它要求模型理解文本的语义和语法,并生成逼真的图像。文本到图像生成在 AI 摄影、概念艺术、建筑建筑、时尚、视频游戏、平面设计等方面有许多实际应用。稳定扩散是一种文本到图像的模式,能够在几秒钟内创作出令人惊叹的艺术效果。这是一个速度和质量的突破,意味着它可以在消费者级别GPU上运行。
2023-06-01 14:32:16
493
原创 机器学习笔记 - 基于TensorFlow Lite的模型部署
TensorFlow Lite 是一个移动端库,可用于在移动设备、微控制器和其他边缘设备上部署模型。假设要执行图像分类任务。首先决定任务的模型。是要创建自定义模型;或者使用预训练模型,如 InceptionNet、MobileNet、NASNetLarge 等。又或者在预训练模型上应用迁移学习。模型训练完成后,您会将模型转换为 Tensorflow Lite 版本。
2023-05-30 13:11:52
339
原创 机器学习笔记 - 将音频转换为图像进行分类的机器学习模型
语音识别技术是将音频信号转化为文本的过程。其基本原理如下:1. 音频录制:首先需要对口语发音进行录制,并将其转化为数字形式的音频文件。2. 预处理:对音频信号进行预处理,包括去除杂音干扰、增加音频的信噪比以及消除不必要的语音、噪声等。3. 特征提取:特征提取是语音信号处理的一个重要部分,通过对音频数据进行分析,提取其中特有的频率、音调、幅度等数学特征,并转化成数字特征。
2023-05-29 20:21:54
528
原创 机器学习笔记 - 基于MATLAB的简单车牌识别系统参考代码
目标是开发一个自动化系统,该系统可以检测图像中的车牌,从车牌中提取字符,并使用光学字符识别(OCR)技术识别它们。车牌识别 (NPR) 是一种计算机视觉和模式识别技术,用于提取和解释车辆车牌上的字符。字符识别:然后使用相关性分析将提取的字符与一组预定义的模板进行匹配,从而能够识别车牌上的字母数字字符。模板创建:字母和数字模板是通过生成单个字符的二进制表示来创建的,这些字符可作为识别的参考。车牌检测:使用边缘检测、形态学运算和基于区域的分割技术定位输入图像中的车牌区域。
2023-05-28 22:37:24
454
原创 机器学习笔记 - Kaggle竞赛 基于SMAPE评估指标的TensorFlow决策森林预测帕金森病进展
比赛提供的AMP®-帕金森病进展预测数据集上的TensorFlow决策森林来训练基线随机森林模型。该模型必须预测MDS-UPDR评分,该评分衡量帕金森病患者的进展情况。这里首先将对数据进行一些预处理,使ML模型更容易从中学习。然后了解如何实现和使用本次比赛中使用的评估指标:SMAPE。决策森林是一个基于树的模型家族,包括随机森林和梯度提升树。在处理表格数据时,它们是比较好的起点,可以提供一个基线,以供下一步基于神经网络进行预测参考之用。
2023-05-27 09:55:47
410
转载 计算机视觉 工业相机镜头接口的种类
我怀疑这可能是由历史原因造成的:如果您留意一下不难发现,佳能公司生产的镜头基本上都是自动镜头(就是尾部带有电子触点的镜头,它的内部含有变焦和对焦的控制电机),这些镜头主要面向的就是持有单反的普通消费者。然而从本质上说,工业相机的成像原理和单反是相同的,它也包括相机本体和对应的镜头,只是我们在说“工业相机”的时候,通常是不包括其镜头的,它一般是下图这个样子,我们也称为“裸机”。M12接口,这个接口对应的数字12,指的是接口直径是12mm(所以,举一反三,M42的直径是42mm,M58是58mm)。
2023-05-26 10:59:29
26
原创 数字图像处理 基于傅里叶变换的图像拼接
这里讨论的算法主要是指应用于基于相机拍摄的显微镜的2D图像的拼接。基于2D显微图像的拼接通常只考虑x、y方向的位移。图像拼接在图像处理中应用广泛。特别是对高分辨率标本成像的需求日益增加。通常,这些标本不适合显微镜的视野。为了克服这一缺点,使用移动样品的电动载物台来创建整个样品的平铺扫描。显微镜载物台提供的物理坐标不够精确,无法从单个图像堆栈重建(“拼接”)整个图像。图像拼接的图像配准环节的技术路线通常分两种,第一种是基于输入图像中检测并提取关键点进行匹配等。
2023-05-26 09:19:18
436
原创 数字图像处理 使用C#进行图像处理八 Unsharp Masking
Unsharp Masking是一种线性图像处理技术,用于锐化图像。清晰的细节被识别为两者之间的差异原始图像及其模糊版本。模糊步骤可以使用任何图像滤波方法,例如中值滤波, 但传统上使用高斯滤波器。半径参数在 非锐化掩蔽滤波器是指高斯滤波器的Σ参数。这里的代码主要针对RGBA格式的图像。下图显示了不同半径和数量参数的效果。
2023-05-23 15:03:02
328
原创 计算机视觉 - 机器视觉光源选型参考
目前没有一个通用的机器视觉照明系统,可以应对不同的检测要求,因此针对每个特定的案例,都需要设计适应的照明装置,以达到最佳效果。机器视觉光源有多种类别,每种类别的光源又有多种型号,在确定类别之后还要进行选型,下面就介绍不同类别光源的选型方法。
2023-05-21 17:11:13
306
原创 机器学习笔记 - windows基于TensorRT的UNet推理部署
NVIDIA TensorRT是一个用于高性能深度学习推理的平台。TensorRT适用于使用CUDA平台的所有NVIDIA GPU。所以如果需要基于TensorRT部署,至少需要一个NVIDIA显卡,算力5.0以上,比Maxwell更新的架构,可以参考下表。需要安装cuda、cudnn。还用到了到了OpenCV,这里是基于TensorRT的c++的api。
2023-05-20 15:38:45
452
原创 机器学习笔记 - 利用自动编码器神经网络构建图像去噪器
传统的图像噪声去除主要是基于各种滤波器,但它们不是特定于数据的,因此可能会损失很多图像的细节,或者噪声去除的效果不是很理想。基于神经网络的自动编码器可以用于学习数据集的噪声去除滤波器。 关于自动编码器的介绍,可以参考下面的链接。https://skydance.blog.csdn.net/article/details/123567960https://skydance.blog.csdn.net/article/details/123567960 一个典型的自动编码器
2023-05-18 11:24:02
269
原创 机器学习笔记 - 微型不平衡数据集的处理思路参考
1、上面说的四种方法,可以做为参考,特别是对于数据量非常小的数据集(比如某一类数据只有几百条那种)。2、实际工作中,还是那缺陷检测的分类问题考虑,很多时候很难像区别猫狗一样把类别分清晰,所以二分类未必是好选择,特别是对于不平衡的数据。3、对于上一条说的数据不好分类的时候,可以考虑人工扩充特征,然后进行人工分类,不需要过多的数据量,比如我们把数据粗分为5类,那么数据量少的类别的数据可能只有几百条,数据量大的类别我们可以控制在千条以内(但是要整理共性)。
2023-05-17 21:36:50
315
原创 时间序列教程 五、ARMA和ARIMA模型回顾及卡尔曼滤波器
在处理ARMA模型时需要记住的一些事项:(1)假设时间序列是静止的。这里我们将回顾并将这两种模型类型组合成三种更复杂的时间序列模型:ARMA、ARIMA和SARIMA。MA模型:指定序列的当前值线性地取决于序列的平均值和一组先前(观察到的)白噪声误差项。AR模型:指定序列的当前值线性地取决于它自己以前的值和随机项(一个不完全可预测的项)。P、 D和Q表示与P、D和Q相同的值,但它们适用于整个季节(例如,每年)。此模型用于删除季节性组件。SARIMA模型表示为SARIMA(p,d,q)(p,d,q)。
2023-05-16 12:04:17
154
原创 机器学习笔记 在自定义数据集上训练 YOLOv8 目标检测器
YOLOv8是Ultralytics开发的YOLO对象检测,分类和分割模型的最新版本。在编写本教程时,YOLOv8 是最先进的尖端模型。与以前的版本在前身 YOLO 模型的基础上构建和改进一样,YOLOv8 也建立在以前的 YOLO 版本的成功基础上。YOLOv8 中的新功能和改进提高了性能和准确性,使其成为最实用的对象检测模型。YOLOv8的一个关键特性是它的可扩展性。它被设计为一个框架,支持所有以前版本的 YOLO,可以轻松地在版本之间切换并对其性能进行基准测试。
2023-05-05 08:53:08
495
原创 机器学习笔记 Segment Anything用于图像分割的通用大模型
人工智能中的基础模型正变得越来越重要。它们被定义为在大量数据上训练的大型人工智能模型,可以适应广泛的任务。基础模型的早期例子是大型语言模型(LLM),如GPT和BERT。随后,该行业也看到了同样的想法被应用于多模态基础模型,如DALLE、CLIP等。基础模型这个术语开始在NLP领域得到实践并正在进一步加快步伐。Segment Anything是Meta的一个项目,旨在为图像分割的基础模型构建起点,其野心也可见一斑。该项目主要包含两个重要组件:1、用于图像分割的大型数据集。
2023-05-03 22:12:09
678
2
原创 机器学习笔记 使用PPOCRLabel标注自己的OCR数据集
运行的时候,直接激活安装了PPOCRLabel的环境后,输入PPOCRLabel回车即可运行,不过PPOCRLabel依赖PyQt5,所以会要求安装PyQt5,按要求安装或者提前安装即可。每行代表一张图象,如果需要自行读取的时候,可以按行读取,图像路径和数组之间是\t进行分隔的,可以使用\t进行分割,数组是json格式,可以读取并解析。下面的代码是标记一张图片的数据,包含图像相对路径以及标记的坐标、文字等组成的数组。在上面标注完成之后,会生成如下的文件,有用的实际上就是Label.txt。
2023-05-03 16:40:51
656
原创 机器学习笔记 计算机视觉中的注意机制综述论文简读
人类视觉系统可以自然高效地找到复杂场景中的重要的区域,受到这种现象的启发,注意力机制(Attention Mechanisms)被引入到计算机视觉系统中。注意力机制已经在计算机视觉的各种任务(如:图像识别、目标检测、语义分割、动作识别、图像生成、三维视觉等)中取得了巨大的成功。但是,研究人员在研究不同任务的注意力机制的时候,往往注重的是任务本身,而忽略了注意力机制本身就是一个研究方向,是一个尝试用计算机视觉系统模拟人类视觉系统的研究方向。
2023-05-02 10:41:14
327
原创 机器学习笔记 图像特征提取器(卷积变体)的技术发展与演变
图像特征提取器是可用于从图像中学习表示的函数或模块。最常见的特征提取器类型是卷积,其中内核在图像上滑动,允许参数共享和平移不变性。在深度学习技术的快速发展过程中,基于卷积也演变出来了若干新技术由于图像特征的提取,这里进行了一下简单梳理,一是加强了解,二是备忘。下面的清单每项都只是一个概念,因为每个概念都产生了若干论文。
2023-05-01 18:46:45
530
原创 机器学习笔记 基于深度学习的边缘检测
边缘检测是视觉工作中十分常用的技术,传统边缘检测已经包含了很多经典的诸如Canny、Robert等等,都是各有擅场,不过有一点问题,就是很多参数需要人工调试,所以深度学习研究人员提出了基于卷积神经网络的边缘检测算法。即HED,该算法通过利用全卷积神经网络和深度监督网络的深度学习模型来执行图像到图像的预测。HED自动学习丰富的层次表示,对于解决边缘和对象边界检测中具有挑战性的模糊性是很重要的。
2023-05-01 10:51:33
583
原创 机器学习笔记 基于OpenCV的文本检测和识别模块
east是一种高效准确的场景文本检测器,网络模型如下。该模型是一个适用于文本检测的全卷积神经网络,输出单词或文本行的密集每像素预测。这就省去了诸如候选建议、文本区域形成和单词分割等中间步骤。后处理步骤仅包括对预测的几何形状进行阈值处理和NMS。论文地址论文对应实现的地址。
2023-04-30 21:42:57
402
原创 机器学习笔记 使用paddleocr推理时的参数设置详解(陆续整理中)
paddleocr的整体架构跟它的野心一样庞大,所以paddleocr的参数就必然很多,官方文档对于参数的描述感觉也不够十分清晰,在刚开始用的时候甚至不知道有哪些参数可以设置,设置之后大概有什么样的影响。因为项目中使用到了,所以对推理时的参数进行了一番探索。
2023-04-23 22:27:33
608
原创 机器学习笔记 - MediaPipe结合OpenCV分析人体标准运动姿势
这里我们要进行一项具体的姿势估计,深蹲姿势的估计。如果为了完成这项任务,我们可以利用基于深度学习的人体姿势估计算法比如估计人类姿势的流行框架包括OpenPose,AlphaPose,Yolov7,MediaPipe等。在设计应用程序来分析各种健身姿势时,可以考虑使用正面图像,也可以使用左右两侧的图像,因此可以利用各种地标点的坡度和角度,例如膝臀部和膝盖线之间的角度等。在之前的文章中,对于MediaPipe进行了初步了解,并对结合OpenCV进行人体姿势估计的技术的处理思路进行看了一些探讨。
2023-04-22 10:26:05
267
原创 机器学习笔记 PyTorch2.0中的新功能概览
eager会在运行时立即执行操作。但是,它无法充分利用 GPU 等硬件加速器的功能。Graph执行在运行之前构建所有操作和操作数的图形。这样的执行比eager要快得多,因为可以优化形成的图形以利用硬件加速器的功能。PyTorch 2.0 版本以较低的内存使用率更快地训练深度神经网络,并支持Graph。此外,PyTorch 2.0旨在利用硬件加速器的功能,并在eager模式下提供更好的加速。
2023-04-19 14:48:32
180
原创 win11破解以开启多用户同时登陆
背景就是有一台电脑,windows11的专业版,上面有一套软件,但是这台电脑还有人需要用。然后再次管理员运行RDPConf.exe,全绿色就好了(如果还没有好,尝试从下面网址下载最新的rdpwrap.ini文件,再次替换下)。至此设置基本完成,但是这两个系统用户还是不能同时登陆,如果远程登陆就会把当前的用户踢下去,反之亦然。搜索远程桌面,点击远程桌面用户,添加上一步新建好的用户,我这里是添加了一个邮箱,就是微软账号。找到其他用户,添加用户,我这里添加的是微软用户的账户。,远程连接的,测试ok。
2023-04-17 15:55:21
1796
原创 时间序列教程 四、自回归和移动平均模型
如果PACF在给定滞后下急剧下降,或者第一滞后自相关为正,则使用阶数p等于急剧下降前滞后的AR模型。如果ACF在给定滞后下急剧下降,或者第一滞后自相关为负,则使用阶数q等于急剧下降前滞后的MA模型。MA模型在概念上是该序列的当前值相对于该序列的一个或多个先前值的白噪声的线性回归。自回归模型AR模型是该序列的当前值相对于该序列的一个或多个先前值的线性回归。对单变量时间序列建模的另一种常见方法是移动平均(MA)模型。自回归模型(AR)是对单变量时间序列建模的一种常见方法。符号AR(p)表示p阶的自回归模型。
2023-04-16 20:26:37
303
原创 机器学习笔记 c#调用python脚本文件进行模型推理
很多的基于python的深度学习的库或者框架,不只是进行推理,还包含推理前的图像预处理和推理后的数据解析的程序。所以在使用的时候如果不基于python使用,那就还需要很多额外工作,还需要自行编写代码处理推理前的图像处理和推理后的数据解析等等。直接上代码,下面的代码主要是基于c#的Process,直接调用python.exe,执行py脚本。1、如果是服务器部署,可能需要注意python的环境,使用的库对于不同cpu的支持情况(有些库对于一些非桌面的cpu可能支持不是很好=)。下面说一下基于c#的调用。
2023-04-15 21:54:05
416
原创 Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传
之所以要用到provider,是因为从Android7.0开始,就不允许在 App 间,使用 file:// 的方式,传递一个 File ,否则就会抛出异常,而provider的作用恰好就是用过 content://的模式替换掉 file://,看上去只是换了个前缀,但其实是有真实路径转为了虚拟路径。再andorid新版本里面,上面申请了权限之后,还是需要动态在申请权限,所以再需要用到的界面的onCreate方法里面添加如下代码,进行申请。这是一个完整的帮助类,可以基于Uri获取绝对路径。
2023-04-12 10:35:16
853
4
原创 时间序列教程 三、对时间序列数据进行平滑处理(续)
具体来说,让我们去掉最后5个观察结果,并将它们作为一个测试集。双指数平滑具有预测趋势的能力。双指数平滑具有预测趋势的能力。但是它没有体现季节性?为此,我们需要三次指数平滑。三指数平滑具有预测趋势和季节性的能力。到目前为止,我们一直在研究的是指数加权平均平滑。我们将首先对训练集应用单指数平滑,并预测前5个观测值。单指数平滑产生的值与预测范围内推出的值相同。你的数据有趋势但没有季节性–使用双指数平滑。你的数据有趋势性和季节性–使用三重指数平滑。你的数据没有趋势–使用单指数平滑。因此,我们考虑双指数平滑。
2023-04-11 16:46:14
405
原创 时间序列教程 三、对时间序列数据进行平滑处理
最简单的的解决方案是计算平均值,并预测未来的值,但是这个方法并不严谨。有时称为单指数平滑,第一步还是选择一个滑动窗口,这里依然是3,然后计算平均值,但是不同的是,我们对于三个数值应用指数权重。因为简单平均值不是一种好办法,所以数据科学家提出了一种称为移动平均的技术,它对数据的局部变化具有更大的敏感性。从上面的图片上看,简单的移动平均技术效果也不错的样子,但是真的是最好的了么?使用MSE的目的是为了比较,我们可以比较不同模型的估计结果,量化比较。平滑是一个重要的工具,可以让你做出未来的预测。
2023-04-10 20:04:21
799
3
原创 时间序列教程 二、识别和转换非平稳时间序列
虽然有更先进的时间序列模型可以处理非平稳数据,但是了解关于平稳性的基础知识是十分必要的。在两个不同区域中具有不同方差的时间序列是非平稳序列。假设一个给定的时间序列具有滞后1的自相关。计算一段时间内的平均值和方差是辨别序列是否平稳的一种有用方法。在建模之前,可以应用变换将非平稳时间序列转换为平稳时间序列。如果看到一个近似正态的分布,表明你的时间序列是平稳的。如果你看到一个非正态分布,表明你的时间序列是非平稳的。平稳时间序列在整个序列中具有恒定的自相关结构。具有趋势性或季节性成分的时间序列是非平稳序列。
2023-04-06 19:17:46
377
原创 自然机器人最新发布:智能流程助手,与GPT深度融合
自然机器人一直秉持着客户第一、自主创新的企业文化,在AGI技术发展的助力下,自然机器人离实现让自动化成为人们的基本技能这一使命的距离更近了一步。自然机器人通过不断探索与研究,还在继续产生更多创新和有价值的场景,以帮助客户进一步实现革命级价值。
2023-04-04 13:43:38
5032
1
分别基于C#、C++的WinUI 3的demo体验项目
2023-06-07
Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传
2023-05-26
基于winform/c#/opencv实现的windows下使用的自动鼠标点击小软件
2022-08-22
医学影像分析+matlab+经典教学课件 介绍医学图像分析领域中使用的数学和统计技术,重点是计算机算法。
2022-06-13
winform + access数据库 + EntityFramework ORM映射
2022-06-01
winform + sqlite数据库 + EntityFramework ORM框架
2022-06-01
c++基础学习参考代码
2022-05-03
winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制功能完整代码
2022-05-03
winform+FileDialog扩展+自定义FileDialog窗口
2022-05-03
计算机视觉+对象类别检测+各种检测技术简述+PPT讲义
2022-04-28
牛津大学2022年计算机视觉课程,深度学习对象类别检测【讲义】
2022-03-30
基于华为P9实现视觉SLAM的低成本方案
2022-03-30
布法罗大学 + SLAM + 讲义PPT
2022-03-30
双击自定义后缀文件关联打开自己的WinForm应用程序
2021-03-27
paint.net-3.36(可运行版本).zip
2020-12-29
深度残差网络.zip
2020-12-26
windows版本nginx1.7 + rtmp模块
2020-12-05
自定义采集的图像数据集,浣熊、鱼、猫,用于训练神经网络
2020-12-02
ssd_mobilenet_v1_coco_2017_11_17.zip
2020-11-21
风景视频,用于图像处理,模拟长曝光
2020-10-26
百度地图切图工具ie内核、chromium内核.zip
2020-03-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人