自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学以致用 知行合一

吾生也有涯,而知也无涯,以有涯随无涯,殆己!

  • 博客(1056)
  • 资源 (23)
  • 收藏
  • 关注

原创 linux-x86_64-musl 里面的musl是什么意思?

在一些开源库里面可以看到,linux-x86_64-musl类似于这样的字符串,这个musl是什么意思呢?在字符串 "linux-x86_64-musl" 中,musl 指的是 musl libc,这是一个轻量级的 C 标准库实现。让我们来拆解一下这个字符串:linux:表示目标操作系统是 Linux。x86_64:表示目标架构是 x86-64,也就是 64 位的 x86 架构。musl:表示使用的 C 标准库是 musl libc。

2024-05-23 09:08:41 313

原创 机器学习笔记 KAN网络架构简述(Kolmogorov-Arnold Networks)

在最近的研究中,出现了号称传统多层感知器 (MLP) 的突破性替代方案,重塑了人工神经网络 (ANN) 的格局。这种创新架构被称为柯尔莫哥洛夫-阿诺德网络 (KAN),它提出了一种受柯尔莫哥洛夫-阿诺德表示定理启发的函数逼近的方法。与 MLP 不同,MLP 依赖于各个节点的固定激活函数,KAN 引入了边缘上的可学习激活函数,从根本上改变了神经网络的结构。这种独特的设计功能完全消除了线性权重矩阵,代之以可学习的一维样条函数。就是说KAN根本没有线性权重,每个权重参数都被参数化为样条函数的单变量函数所取代。

2024-05-15 15:27:44 188

原创 机器学习笔记 PostgresML教程:使用SQL进行机器学习

由于 PostgresML 本质上是一个数据库,因此您可以在任何支持 Postgres 的环境中(基本上在任何地方)与其进行交互。它引入了一种称为“数据库内”机器学习的新范式,允许您在 SQL 中执行许多 ML 任务,而无需在每个步骤中使用单独的工具。由于今天的数据库比机器学习模型大好多个数量级,所以PostgresML的思路是,如果我们将模型引入数据集不是会容易得多吗?不过天下没有免费的午餐,需要一路注册、安装该数据库,然后举个例子,可以使用 Kaggle 的Diamonds 数据集创建一个表。

2024-05-14 21:32:09 123

原创 如何管理Linux环境变量?

如果要为登录shell设置变量,请修改~/.profile文件,而不是~/.bashrc。假设当您已经安装了GCC 7.3 时,要指定 C++ 编译器 ( CXX) 环境变量,您需要将该变量设置为所需 C++ 编译器的路径。在这种情况下,您需要将其设置为g++-7.3编译器可执行文件的路径,该路径通常与 GCC 7.3 关联。临时设置CXX变量: CXX要为单个命令或短会话临时设置变量,您可以export在终端中使用该命令。Linux 发行版具有环境变量和 shell 变量,它们的功能类似,但作用域不同。

2024-05-14 10:28:15 1030

原创 银河麒麟V10操作系统编译LLVM18踩坑记录

要在银河麒麟V10操作系统上编译一个LLVM18,这个系统之前确实也没有用过,所以开始了一系列的摸排工作,进行一下记录。首先肯定是要搞一个系统,所以去到银河麒麟的网站,填写了一个申请产品试用申请·国产操作系统、麒麟操作系统——麒麟软件官方网站麒麟软件是专业从事国产操作系统研发和产业化的高新技术企业,旗下拥有银河麒麟、中标麒麟、星光麒麟三大国产操作系统品牌,服务国内用户超过6万家。

2024-05-14 09:58:18 1036 1

原创 Hyper-V 管理器安装的ubutun扩容磁盘空间说明

首先把这个想要扩容的虚拟机停止掉,然后找到检查点,全删除掉,否则没法编辑这个虚拟磁盘。

2024-05-09 16:02:19 277

原创 Hyper-V安装centos8时遇到的一些问题整理

有三种说法,一是说虚拟机上启用了安全启动,可以找到关闭它,我自己的状况就是启用安全启动了,关闭就好了。另外的说法是BOSS 卡固件或驱动程序已过时或与虚拟机不兼容。建议您更新BOSS卡固件或驱动程序。第三个可能原因是P2V转换工具(就像Disk2VHD)没有正确或完整地捕获BOSS卡。

2024-05-07 09:39:35 404

原创 机器学习笔记 - Python数据清理通用流程简述

Python中数据清理是重要的环节,并通过解决缺失值、离群值、重复和不一致等常见问题以进行下一步的数据分析。通常我们开始一个新的数据项目时,通因为各种各样的问题,通常获得的数据很少能直接上到模型里面去跑,所以要进行清理,清理数据是一个消除错误、异常值和不一致并确保所有数据采用适合我们分析的格式的过程。包含许多错误或未经过此数据清理过程的数据称为脏数据。比如下面的一个小数据集,虽然大家分数都不高,但是小李有两条重复的数据,如果我们计算分数列的平均值,那么这个数据是不准确的。

2024-05-01 15:51:25 190

原创 机器学习笔记 - 基于pytorch的自定义数据集和数据加载器

_getitem__是根据给定索引找到图像,进行处理,并继续找到对应目标检测的xml文件,读取解析里面的坐标信息等,并且最终返回图像和标签等信息。__init__函数里面定义了基本信息,我们可以看到有路径、图像宽高、分类信息、图像后缀等,主要的是所有图像的路径信息的集合。自定义 Dataset 类必须实现三个函数:__init__、__len__和__getitem__。下面的代码,是基于voc格式的目标检测的数据集编写的。__len__最简单,就是所有的图像的数量。初始化DataLoader。

2024-04-26 22:02:12 341

原创 机器学习笔记 - scikit-learn中的metric参数和metric_params参数如何使用?

在 scikit-learn 库中的一些算法里面,这里是指需要使用距离度量或相似度度量的算法,这里拿KNeighborsclassifier举例来说,会有metric参数,这个参数用于指定距离度量方法。当你使用自定义距离度量方法时,有时可能需要传递一些额外的参数给该方法,以便根据特定的需求定制距离计算的过程。除了使用这些内置的参数,我们还可以自定义距离度量方法,将一个可调用的函数传递给'metric'参数。参数可以使距离度量方法更加灵活和定制化,因为可以根据需要传递任意数量的额外参数给距离度量方法。

2024-04-26 20:37:16 392

原创 大语言模型微调过程中的 RLHF 和 RLAIF 有什么区别?

在 RLHF 和 RLAIF 之间进行选择时,不存在一刀切的解决方案。选择取决于各种因素,例如业务目标、目标受众人口统计、语言要求和预算限制。如果您的主要目标是保持所有内容资产的一致性和质量,RLHF 可能是理想的选择。但是,如果您的目标是多元化的全球市场,并且需要使您的内容适应当地语言和文化,RLAIF 可以提供您所需的灵活性和定制功能。考虑解决方案的可扩展性及其与现有内容管理系统和工作流程的兼容性。RLHF可能更适合语言要求标准化的大规模内容运营,而RLAIF则在全球整合和多语言支持方面表现出色。

2024-04-23 10:06:01 1229

原创 C#中如何定义带参数的EventHandler?

确实也可以,但是假如是跨进程呢,事件是由其它进程触发,我们无法挂载任何多余信息,而且进程状态不可控,并且关联到我们系统内的id,那么就需要再事件里面找到id,根据什么找呢?你肯定要问,我为什么一定要传参数,我定义全局的不成么?当然可以,但是假如你这个事件关联到全局的字典,在事件里面要区分是谁调用,那就有用了。事件调用的所有方法都需要两个参数:object sender,EventArgs e。所以更好的方法就是在绑定事件的时候,就把自定义的参数传入。该事件使用这两个参数调用方法,因此我们不能。

2024-04-23 08:36:01 496

原创 适合初学者的自然语言处理 (NLP) 综合指南

自然语言处理 (NLP) 是人工智能 (AI) 最热门的领域之一,现在主要指大语言模型了。这要归功于人们热衷于能编写故事的文本生成器、欺骗人们的聊天机器人以及产生照片级真实感的文本到图像程序等应用程序。近年来,计算机理解人类语言、编程语言,甚至类似于语言的生物和化学序列(例如 DNA 和蛋白质结构)的能力发生了革命。最新的人工智能模型正在解锁这些领域,以分析输入文本的含义并生成有意义的、富有冲击力(你懂的)的输出。

2024-04-21 09:27:52 1272 2

原创 自然语言处理 (NLP) 的技术演变史

本文的目标是了解自然语言处理 (NLP) 的历史,包括 Transformer 体系结构如何彻底改变该领域并帮助我们创建大型语言模型 (LLM)。基础模型(如 GPT-4)是最先进的自然语言处理模型,旨在理解、生成人类语言并与之交互。 要理解基础模型的重要性,有必要探索它们的起源,它们源于人工智能和自然语言处理领域的进步。许多 LLM 都是开源的,可通过 Hugging Face 等社区公开获取。很多云服务商还提供了最常用的 LLM 作为基础模型。基础模型是通过大型文本预先训练的,可以

2024-04-21 07:00:00 1226

原创 机器学习笔记 - 调试别人的神经网络+遗传算法实现汽车学习自我导航的Unity项目

调试运行这个项目不是最终目的,主要是为了了解几点。第一、学习开发或测试类似可视化的进化学习的项目的一个流程。第二、神经网络+遗传算法+Unity的结合。第三、佩服一下这些有想法,有执行力的大神们。下一步就可以从参考别人的项目开始,弄一下自己觉得有意思的东西。

2024-04-20 11:50:54 495

原创 什么是大语言模型以及如何构建自己的大型语言模型?

LLM 对于无数的应用程序非常有用,通过从头开始构建一个,您可以了解底层的 ML 技术,并可以根据您的特定需求定制 LLM。大型语言模型是一种 ML 模型,可以执行各种自然语言处理任务,从创建内容到将文本从一种语言翻译为另一种语言。“大”一词描述了语言模型在学习期间可以改变的参数数量,拥有数十亿、百亿、千亿,甚至万亿级别的参数。大型学习模型必须经过预训练,然后进行微调,以教授人类语言来解决文本分类、文本生成挑战、问题解答和文档摘要。顶级大型语言模型解决各种问题的潜力 在金融、医疗保健和娱乐等领域都有应用。

2024-04-19 20:13:52 1384

原创 可持续发展:制造铝制饮料罐要消耗多少资源?

由于铝是一种可持续金属,因此可以一次又一次地回收利用,饮料罐公司发现,通过重复使用回收的铝,他们可以节省通常用铝制造罐所需的 95% 的能源。为了使其适用于这些类型的板材中的任何一种,要么将纯铝添加到混合物中以稀释镁浓度并降低金属的刚度,使其适用于罐体,要么将更多的镁添加到混合物中,以便适用于制作罐盖。铝制饮料罐是人们经常使用的日常用品,无论是在购物、午休还是在自动售货机前选择喝什么的时候,很少有人会想知道装他们喝的饮料的罐子到底是如何制成的,或者这些铝罐的原材料是如何进出的。

2024-04-19 12:25:45 679

原创 程序使用哪个寄存器是由谁决定的?

编译器分析程序的代码,识别常用的变量和表达式,并将它们映射到适当的寄存器。常用变量:程序的结构和数据访问模式影响寄存器的使用。数据局部性:寄存器分配还考虑数据局部性,旨在通过将经常访问的数据放置在寄存器中来使数据更靠近处理器。手动寄存器分配:在某些情况下,程序员可以手动指定寄存器的使用,以达到优化目的或控制特定的硬件交互。动态寄存器分配:动态寄存器分配发生在运行时,根据程序的执行流程和数据访问模式调整寄存器的使用。静态寄存器分配:静态寄存器分配在编译期间执行,分析整个程序的代码以确定寄存器的使用情况。

2024-04-19 11:57:04 384

原创 机器学习笔记 - 使用 OpenCV 的结构化森林进行边缘检测

边缘检测是计算机视觉领域中一项非常重要的任务。这是许多纯计算机视觉任务(例如轮廓检测)的第一步。即使涉及深度学习,较深层也首先学习识别边缘,然后再学习图像的复杂特征。所以,我们可以说边缘检测在计算机视觉领域非常重要。拥有良好且高效的图像边缘检测算法同样重要。结构化森林进行边缘检测,也称为结构化边缘检测器。已经有许多有效的边缘检测器,例如Canny、Sobel 和 Laplacian 边缘检测器。他们为什么我们需要另一个结构化边缘检测器。这种检测器的主要特点是它能够快速且更好地预测局部掩模的边缘。

2024-04-18 22:18:35 715 2

原创 机器学习笔记 - torch.hub 和 torchvision.models 的区别

torch.hub 和 torchvision.models 都是 PyTorch 中用于加载模型的工具,但它们之间有很大差异。torchvision.models包含 PyTorch 官方支持的经典模型架构,例如 AlexNet、VGG、ResNet、MobileNet 等。这些模型经过充分测试和优化,文档完善,使用方便。而torch.hub用于加载来自 Torch Hub 平台的模型。

2024-04-17 15:17:54 395 1

原创 C#基于SSE传递消息给Vue前端实现即时单向通讯

通常前端调用后端的API,调用到了,等待执行完,拿到返回的数据,进行渲染,流程就完事了。如果想要即时怎么办?如果你想问什么场景非要即时通讯,那可就很多了,比如在线聊天、实时数据推送、视频会议等等。本人这里是要实现的流程是,Vue调用C#的API,然后API内新线程调用python执行任务,然后API就给前端返回执行开始的消息,Vue和API就结束了。但是python执行的是十分耗时的任务,需要不断的把中间节点的消息输出到前端,是这样子一个场景。

2024-04-16 07:26:14 612 2

原创 机器学习笔记 使用Python从头开始​​构建百万参数LLaMA

LLaMA(LargeLanguageModelMetaAI)是一个基础语言模型的集合,参数范围从 7B 到 65B,LLaMA并非专门为对话任务而设计的模型,而是专注于语言理解和生成。但是作为基础模型,LLaMA 被设计为多功能的,可以应用于许多不同的用例,而不是为特定任务设计的微调模型。换句话说,你可以训练自己的基础模型,在这个基础上为其他任务(比如对话)继续进行微调。

2024-04-08 19:51:49 259

原创 vanilla是什么意思?为什么很多名词都要加上vanilla?比如 vanilla Transformer

Plain vanilla 是一个形容词,描述某事物的最简单版本,没有任何可选的附加功能,基本的或普通的。Vanilla Transformer 指的是最初由 Vaswani 等人在 "Attention is All You Need" 论文中提出的 Transformer 模型架构,没有任何额外的修改或改进。Transformer-XL: 指代 Transformer 模型的改进版本,具有更长的上下文依赖关系。强调模型的简单性: "Vanilla" 意味着模型的简单性和纯粹性,没有额外的复杂性。

2024-04-08 11:15:01 710

原创 Unity学习笔记 - 第一个Hello World都算不上的项目

第一次使用Unity,照着教程和别人的博客做了一个十分入门的,暂时先这样,因为了解Unity主要是为了研究测试一下结合了神经网络的遗传算法的具象呈现,Unity开发本身也挺有意思的,后面会继续深入了解一下,因为目前了解的还差太远,后面再有什么心得,再来分享。

2024-04-07 22:29:16 1259

原创 什么是超导悬浮?工作原理是什么?

迈斯纳效应 (Meissner effect)是指当某些材料冷却到足够低的温度 (低于其临界温度) 时,会转变为超导状态。超导体具有完全抗磁性,会排斥外部磁场,使得磁力线无法穿透超导体内部。 当一块超导体置于磁场中时,超导体会产生反向磁场,与外部磁场相互排斥,从而产生悬浮力。量子锁定 (Quantum Locking)是指当超导体冷却到足够低的温度时,磁通线会被“锁定”在超导体内部的特定位置。 这些被锁定的磁通线会形成稳定的磁通钉扎,即使改变超导体的位置或方向,磁通线也会保持锁定状态。

2024-04-07 15:30:31 396

原创 分布式深度学习库BigDL简述

BigDL是一个在Apache Spark上构建的分布式深度学习库,由英特尔开发并开源。它允许用户使用Scala或Python语言在大规模数据集上进行深度学习模型的训练和推理。BigDL提供了许多常见的深度学习模型和算法的实现,包括卷积神经网络(CNN)、循环神经网络(RNN)等。由于其在Apache Spark上运行,因此可以很好地与Spark的分布式计算框架集成,充分利用分布式计算资源进行模型训练和推理,从而加速深度学习任务的处理速度。

2024-04-06 11:30:40 634

原创 机器学习笔记 - 文字转语音技术路线简述以及相关工具不完全清单

今天的文本到语音转换技术(TTS)的目标已经不仅仅是让机器说话,而是让它们听起来像不同年龄和性别的人类。通常,TTS 系统合成器的质量是从不同方面进行评估的,包括合成语音的清晰度、自然度和偏好,以及人类感知因素,例如可理解性。

2024-04-06 10:40:43 503

原创 机器学习笔记 - 深度学习遇到超大图像怎么办?使用 xT 对极大图像进行建模论文简读

​上下文编码器的工作是从区域编码器中获取详细的表示并将它们缝合在一起,确保在其他标记的上下文中考虑到其它标记。作为计算机视觉研究人员,在处理大图像时,避免不了受到硬件的限制,毕竟大图像已经不再罕见,手机的相机和绕地球运行的卫星上的相机可以拍摄如此超大的照片,遇到超大图像的时候,我们当前最好的模型和硬件都会达到极限。所以我们既想看到某颗具体的树木,也想看到整个森林,这就是这个框架被提出来的原因。该框架将这些巨大的图像按层次结构切成更小、更容易理解的部分,然后使用一些巧妙的技术,弄清楚这些部分之间的关系。

2024-04-05 17:24:50 368

原创 Python学习笔记 - 如何在google Colab中显示图像?

这里是使用的opencv进行图片的读取,自然也是想使用opencv的imshow方法来显示图像,但是在google Colab中不可以使用,所以寻找了一下变通的显示方法。

2024-04-01 21:37:15 251

原创 适用于 Linux 的 Windows 子系统安装初体验

Windows Subsystem for Linux (WSL) 是 Windows 的一项功能,允许您在 Windows 计算机上运行 Linux 环境,而无需单独的虚拟机或双重启动。 WSL 旨在为想要同时使用 Windows 和 Linux 的开发人员提供无缝且高效的体验。

2024-03-31 11:15:54 655

原创 Python学习笔记 - Python 2.x 和 Python 3.x 之间的重要区别

在本文中,我们将通过一些示例了解 Python 2.x 和 Python 3.x 之间的一些重要区别。

2024-03-31 10:09:34 232

原创 激光是如何产生的?

美国于1960年成功研制出世界上第一台红宝石激光器,我国也于1961年成功研制出第一台国产红宝石激光器(诞生于中国科学院长春光学精密机械研究所),激光技术被认为是第二个20世纪,继量子物理、无线电技术、原子能技术、半导体技术之后。继计算机技术之后的又一重大新科技成果。

2024-03-28 21:06:37 959

原创 人工智能绘画的算法和原理简述

目前,扩散模型是最常用的AI生成图像的方法之一。扩散模型基于非平衡热力学,这是热力学的一个分支,专门研究不处于热力学平衡中的物理系统。一个典型的例子是一滴墨水在水中扩散。在墨水开始扩散之前,它会在水中某个地方形成一个大的斑点。如果要模拟墨水开始扩散前的初始状态概率分布,将会非常困难,因为这个分布非常复杂,很难进行采样。然而,随着墨水扩散到水中,水逐渐变成淡蓝色,墨水分子会更加简单和均匀地分布。此时,我们可以使用数学公式来描述其中的概率分布。

2024-03-24 10:34:36 781 1

原创 CPU生产的生命周期 - 回收篇

在IBM的PELM(产品报废管理)计划中,他们能够回收76%的“2014年投放市场的IBM IT设备”,只有0.5%“送往垃圾填埋场或焚烧”。根据“英特尔处理器中回收半导体的可行性”来源中的计算,可以根据 EPA 2009 年的调查计算出 CPU 中使用的硅量。由于资源枯竭对我们的集体消费率构成持续威胁,STEP 预测,随着资源变得稀缺和价格上涨,公司将有更大的动力回收其产品和同一类别的产品。所有这一切的结论是,我们对电子垃圾的回收习惯必须加以改善,以平衡日益饱和的包含 CPU 的电子产品市场。

2024-03-19 09:22:29 990

原创 CPU生产的生命周期 - 原材料篇

CPU 主要由硅、铜和塑料组成。在美国,由于劳动力成本高昂,硅回收是不存在的。然而,最高的能源消耗发生在硅提纯过程中,这意味着一旦 CPU 报废,大部分能源就会被浪费。对于 CPU 设计者来说,考虑回收材料的成本非常重要,这样才有经济动力这样做。否则,这些科技公司还是会倾向于直接扔掉这些材料。

2024-03-18 17:01:13 978

原创 万物互联的价值

随着我们习惯了万物互联,我们将需要改变我们的行为和使用互联网的方式。你们中的许多人已经看到了网络邮件、在线电影和音乐、社交媒体、消息应用程序和互动游戏的出现。对于零售行业来说,功能可能包括视频、客户行为分析、数据分析和可视化以及任何设备上的基于位置的营销。将不同类型的网络融合到一个平台上是构建支持万物互联的智能信息网络的第一阶段。必须支持信息共享和管理,并且必须开发数据提取技术,以便在正确的时间向正确的人和事提供正确的信息。2012年的时候联网设备的数量就已经超过了地球上的人口数量。

2024-03-16 12:17:18 411

原创 快速了解微软推出的开发人员主页的应用

开发人员主页是一个新的 Windows 控制中心,提供以下功能:使用可自定义小组件监视仪表板中的项目,通过下载应用、包或存储库来设置开发环境,连接到开发人员帐户和工具(如 GitHub),以及创建开发驱动器以便在一个位置进行存储。将集中式仪表板与可自定义的小组件结合使用,可监视工作流、跟踪开发项目、编码任务、Azure DevOps 查询、GitHub 问题、拉取请求、可用 SSH 连接以及系统 CPU、GPU、内存和网络性能。使用计算机配置工具在新设备上设置开发环境或载入新的开发项目。

2024-03-16 11:24:02 1098

原创 机器学习笔记 - 用于3D物体检测的KITTI数据集的使用及说明

KITTI 是由卡尔斯鲁厄理工学院和芝加哥丰田理工学院开发的自动驾驶数据集(目前分2012和2015版本)。它是计算机视觉研究中使用的图像和 LIDAR 数据的集合,例如立体视觉、光流、视觉里程计、3D 对象检测和 3D 跟踪。KITTI Odometry 数据集是用于评估视觉里程计算法性能的基准数据集。它由从移动车辆记录的立体图像序列的集合以及车辆运动的相应地面实况数据组成。这个项目的主要目的是建立一个具有挑战性的,来自真实世界的测试集。他们使用的数据采集车配备了如下设备。

2024-03-13 18:17:05 1459 2

原创 数字图像处理 使用C#进行图像处理九 实现傅里叶变换

傅立叶变换将图像分解为其正弦和余弦分量。换句话说,它将图像从空间域变换到频率域。这个想法是任何函数都可以用无限正弦函数和余弦函数之和来精确近似。傅里叶变换是实现此目的的一种方法。网上有很多关于傅里叶变换的文章,这里就不进行赘述了,这里主要结合代码和公式,一步步实现图像从空域到频域的变换。

2024-03-13 15:50:04 594

原创 有趣的数学 毕达哥拉斯定理

所以毕达哥拉斯和他的古希腊后人将这个定理解释为面积相等:“用直角三角形中最长边构造的正方形面积,是由另外两边构造的正方形面积的和。阿基米德是一位思想巨人,毕达哥拉斯或许算不上,但人们往往低估了他的贡献,他值得更多赞誉——不在于他做出了什么,而在于他推动了什么。在托马斯·希思爵士的著名译本中,这个命题是这样写的:“在直角三角形中,直角所对的边上的正方形等于夹直角的边上的两个正方形。欧几里得把几何学变成了逻辑:他明确地列出了自己的基本假设,并援引这些假设,为他的所有定理提供系统的证明。中和右:定理的另一证明。

2024-03-12 21:55:06 883

顶级资源,布法罗大学深度学习超详细讲义英文版 共20章,三大部分:应用数学和机器学习基础、深度网络:现代实践、深度学习研究

概述 深度学习简介(19MB) 深度学习概述(15MB) 深度学习深度(2MB) 深度学习的历史趋势(9.9MB) 应用数学和机器学习基础知识 线性代数 机器学习的线性代数(2.1MB) 概率与信息论 概率与信息论(2.1MB) 数值计算和基于梯度的优化 数值计算(228KB) 基于梯度的优化(6.6MB) 机器学习基础知识 学习的定义(5.3MB) 容量:欠拟合、过拟合(1.7MB) 超参数和验证集(490KB) 估计量、偏差和方差(741KB) 最大似然估计(367KB) 贝叶斯统计(431KB) 监督学习算法(350KB) 无监督学习算法(299KB) 随机梯度下降(366KB) 构建机器学习算法(259KB) 激励深度学习的挑战(2.4MB) 深度学习软件库 Python 库(130KB) 张量流 Tensorflow 中的 Fizzbuzz (130KB) 深度网络:现代实践 深度前馈网络 前馈网络(2.1MB) 基于梯度的学习(2.3MB) 隐藏单元(1MB) 架构设计(3.2MB) 反向传播和微分 前向/后向传播(2.3MB) .............. ......

2023-09-10

分别基于C#、C++的WinUI 3的demo体验项目

显示如何从图片库中检索照片,然后使用各种照片效果编辑所选图像。 用于查看和编辑图像文件的迷你应用程序,演示Windows应用程序SDK应用程序的XAML布局、数据绑定和UI自定义功能。照片编辑器向您展示如何从**图片**库中检索照片,然后使用各种照片效果编辑所选图像。在示例的源代码中,您将看到许多常见的做法,如[数据绑定]和[异步编程]。 此示例针对Windows应用程序SDK进行测试以及Visual Studio 2022。

2023-06-07

Android开发 8.0及以上调用相机/相册,并根据Uri获取图像绝对路径,并进行文件上传

参考链接:https://skydance.blog.csdn.net/article/details/129745348 一、权限问题 二、调用相机 1、声明provider 首先,我们需要在主配置文件中声明provider,与activity同级别。之所以要用到provider,是因为从Android7.0开始,就不允许在 App 间,使用 file:// 的方式,传递一个 File ,否则就会抛出异常,而provider的作用恰好就是用过 content://的模式替换掉 file://,看上去只是换了个前缀,但其实是有真实路径转为了虚拟路径。 2、调用相机 首先创建一个文件,用于保存拍照图像,然后根据不同系统版本获取Uri,传递给Intent,然后调起相机(可以考虑将outputImage、imageUri设置为全局变量)。 3、处理回调 使用BitmapFactory读取imageUri,得到bitmap,然后进行一些压缩,然后显示。

2023-05-26

基于winform/c#/opencv实现的windows下使用的自动鼠标点击小软件

【2022/08/22】版本v1.0 【功能描述】 目前实现两种点击模式。 间隔模式:一句话描述,按设置好的间隔时间鼠标左键单击用户设定的位置。 图片模式:一句话描述,用户截图想要识别的图片,上传到软件,然后软件按设置好的间隔时间识别屏幕是否出现了用户上传的图片,如果识别到了,则鼠标左键单击用户设定的位置。 后面会增加一些点击模式,比如文字识别,颜色识别等。 【使用要点】 1、不能进行屏幕缩放,就是《显示设置》-《缩放和布局》那里的缩放,需要使用百分之百,否则定位不准确。 2、快捷键f1为确认功能,比如选择鼠标点击位置,f1进行最终确认。 3、快捷键f5为开始运行。 4、快捷键f6为结束运行。 【文章链接】 更新细节等会记录在下面文章地址,如果不能访问,可能就是刚更新审核中,耐心等待即可。 https://skydance.blog.csdn.net/article/details/126441719 【如有个性化需求】可以私信我独立开发,费用具体谈。 【想增加通用功能】也可以私信我描述清楚需求,如果不是十分复杂,也会进行功能增加之后更新版本。

2022-08-22

医学影像分析+matlab+经典教学课件 介绍医学图像分析领域中使用的数学和统计技术,重点是计算机算法。

1、MATLAB 是教学语言。 2、介绍医学图像分析领域中使用的数学和统计技术,重点是计算机实现。我们将研究基于使用各种模型的算法和策略来解决以下医学成像问题:表示、可视化、特征提取、去噪、图像配准、形态测量(可变形)、量化和验证。 3、包含以下细节内容:数字图像数据、随机场、希尔伯特空间、傅里叶分析、小波、线性和非线性滤波器、时间序列、多元技术、模式识别、形状建模、可变形模板、曲线和曲面几何、有限元方法 (FEM)、相似性度量、图像模拟、图像配准(2D 表面和 3D 体积)、统计参数映射 (SPM)、多重比较校正、计算统计、验证技术。 4、一些小节主题摘抄 分割是根据某些标准将数字图像划分为多个区域。 fMRI 示例:杏仁核中的功能性 MRI 显示实验 皮尔逊积矩相关系数 复杂图像重建回顾 图像复杂性可以表征图像和潜在的临床状况(癌症的存在、阿尔茨海默病)。 医学影像分析流程: (1)图像采集 MRI、fMRI、PET、CT、EEG、MEG 等。 (2)将图像导入计算机DIACOM、MINC、ANALYZE、BRIK。 (3)基于图像强度的分割 / 可变形曲线和曲面 (4)图像配准

2022-06-13

winform + access数据库 + EntityFramework ORM映射

压缩包内包含示例程序、引擎等等 1、winform桌面程序使用access数据库的化,如果用户的电脑里面没有安装最新的access软件(应该是2019版本以上)或者不安装access,就需要安装accessdatabaseengine引擎。 2、accessdatabaseengine引擎分为32位和64位。 3、如果要使用EntityFramework还需要JetEntityFrameworkProvider,这是第三方github提供的软件,在NuGet上也提供了,不过它仅支持32位的,如果想要使用64位的,可以下载源码重新编译dll。 4、上面说的accessdatabaseengine引擎和JetEntityFrameworkProvider要配套,要么都是32要么都是64位的。 5、winform软件启动的时候连接access数据库的时候,启动有点慢,经过抓包测试过,慢的原因是会访问微软的网站,不过网站已经访问不通了所以很慢,如果断网启动就会很快。另一个不一定靠谱的办法是打开office软件更改信任中心的隐私选项,给关闭掉,不让office访问联机服务和信息反馈。

2022-06-01

winform + sqlite数据库 + EntityFramework ORM框架

1、基于.Net Framework4.8的桌面窗口程序。 2、代码演示如何使用sqlite数据库。 3、基于EntityFramework的ORM框架。 4、可以使用SQLite Expert Personal软件查看sqlite数据库文件,数据库文件名为sqlite.db3,位于bin/debug文件夹下。 5、数据库连接描述connectionStrings,再App.config文件内配置。 6、主窗口内放置了一个listview,进入界面时会读取表内数据,展示在listview中,另外界面有两个按钮,一个添加,一个删除,调用我们的EntityFramework的层结构,进行存储或删除。 7、在入口文件方法内,使用GetItemCollection方法进行EF暖机操作,以避免第一次度数据库过慢,不过这个方法是否有效需要自行感受,数据库越复杂可能感受越明显。 8、需要NuGet引入EntityFramework、System.Data.SQLite.Core、System.Data.SQLite.EF6、System.Data.SQLite.Linq等相关的库。

2022-06-01

c++基础学习参考代码

1、标识符、关键字、常量、变量、数据类型、指针、运算符、字符串处理等全部基础点。 2、包含所有流程语句,简单语句、复合语句、ifelse、循环..... 3、函数、内联、重载、模板函数、作用域、命名空间等 4、类和对象、多继承、虚继承、嵌套类、局部类、类模板 5、窗口设置、通用对象、设计媒体播放器、图形设备接口、文件操作、GDI+、程序调试、打印相关、注册表操作、ADO数据库编程、多线程程序设计、动态链接库、套接字socket编程。 6、项目实战局域网监控系统、垃圾文件清理工具、视频聊天软件、人事考勤管理系统等。

2022-05-03

winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制功能完整代码

winform使用Graphics进行线段、圆、椭圆、铅笔、多边形等绘制。 同时还有保存、恢复等功能,可以根据需求自定义扩展。、 抽象基类如下所示, public abstract class DrawObject { #region Members //是否被选中 private bool selected; //绘制对象的颜色 private Color color; //绘制对象的线条宽度 private int penWidth; //绘制对象的id标识 int id; // Last used property values (may be kept in the Registry) private static Color lastUsedColor = Color.Black;

2022-05-03

winform+FileDialog扩展+自定义FileDialog窗口

内容概要:使用winform原生开发的自定义FileDialog窗口控件,再系统FileDialog的基础上进行扩展。 基于UserControl。 public partial class FileDialogControlBase : UserControl { #region Delegates public delegate void PathChangedEventHandler(IWin32Window sender, string filePath); public delegate void FilterChangedEventHandler(IWin32Window sender, int index); #endregion }

2022-05-03

计算机视觉+对象类别检测+各种检测技术简述+PPT讲义

1、通过滑动窗口分类检测 2、多尺度(和纵横比)来检测不同大小的对象 3、困难负例挖掘的重要性(由于类不平衡) 4、通过仅选择窗口子集来加速训练和推理 5、使用 CNN 进行对象类别检测 两阶段方法:Faster R CNN 一段式方法:SSD 评价数据集:COCO 6、涉及最先进的方法最近的改进 模块:特征金字塔网络、焦点损失 培训:复制粘贴数据增强 架构:RetinaNet、CenterNet、FCOS、Mask R CNN、DETR、Swin 7、实例分割 8、使用移位窗口的分层视觉转换器 9、DETR:使用变压器进行端到端对象检测 10、复制粘贴和大规模抖动数据增强 11、对象检测、分割、实例分割等的新基准数据集: LVIS(Large Vocabulary Instance Segmentation):1200个类别,164K 图像,220万个实例分割

2022-04-28

牛津大学2022年计算机视觉课程,深度学习对象类别检测【讲义】

主要涵盖以下内容,并介绍最先进的网络和架构 1、视觉场景理解,对象类别、身份、属性、活动、关系、位置…… 2、任务:分类、定位、分割 3、视觉问答、对象跟踪 4、滑动窗口检测器原理、训练滑动窗口检测器、加速推理 5、两阶段和一阶段网络 5、imagenet、AlexNet、VGG16、ResNet、Squeeze & Excitation 、Faster RCNN 6、“Anchors”:预定义的候选区域 7、RPN:区域提案网络、Anchor Box、Multiple Anchors、正负训练区域 8、大规模数据增强 9、DETR: End to end object detection using transformer

2022-03-30

基于华为P9实现视觉SLAM的低成本方案

关注 SLAM 算法在 HUAWEI P9 上的可能性。目标是在 Android 平台上开发移动应用程序。该应用程序应该能够使用手机中嵌入的传感器(例如摄像头、陀螺仪和加速度计)来绘制、建模和定位周围环境,同时将手机随身携带。我们系统的核心是视觉 SLAM 算法。基于精度和手机存储容量,我们选择ORB-SLAM作为框架。华为 P9 上的一个摄像头、一个加速度计和一个陀螺仪作为输入设备。应用紧密耦合的视觉惯性传感器融合算法来获得基于视觉和惯性输入的相机位姿估计,从而能够在慢动作和拥挤场景中稳健地工作。我们还在计算机上离线应用 3D 地图重建来可视化 SLAM 结果。总的来说,我们的应用可以在华为P9上实现SLAM,离线3D地图重建系统可以可视化。峰值 CPU 使用率超出我们的预期 1%。所有其他规范,包括本地化错误、本地化时间、内存使用峰值、互联网带宽使用、用户学习时间和成本均已满足。该项目预示着基于智能手机的自动驾驶汽车的可能。

2022-03-30

布法罗大学 + SLAM + 讲义PPT

布法罗大学SLAM讲义PPT下载。 1、SLAM 是一种用于在未知环境或已知环境中构建地图同时跟踪当前位置的技术。 2、为了构建地图,我们必须知道我们的位置;为了确定我们的位置,我们需要一张地图! 3、同步定位与地图构建 (SLAM) 是自动驾驶汽车所用的一种技术,您不仅可以用它构建地图,还可同时在该地图上定位您的车辆。 4、大致说来,实现 SLAM 需要两类技术。一类技术是传感器信号处理(包括前端处理),这类技术在很大程度上取决于所用的传感器。另一类技术是位姿图优化(包括后端处理),这类技术与传感器无关。 5、相关硬件:移动机器人、距离测量装置 6、SLAM 是 SfM(运动恢复结构:Structure from Motion)的一种实时版本。 7、目前,SLAM技术被广泛运用于机器人、无人机、无人驾驶、AR、VR等领域,依靠传感器可实现机器的自主定位、建图、路径规划等功能。 8、

2022-03-30

着色论文及算法(含matlab代码)

这里的算法基于一个简单的前提,即时空附近具有相似灰度级的像素也应该具有相似的颜色。适合用于视频和图像着色处理。

2021-08-04

双击自定义后缀文件关联打开自己的WinForm应用程序

主要是实现了以下功能,适合初学Windows桌面应用开发的人员: 1、程序运行时请求管理员权限。 1、程序运行时写入注册表。 (1)关联自定义后缀文件关联到自己的应用。 (2)指定自定义后缀文件的logo。 2、双击自定义后缀文件开自己的应用,并传递文件路径参数到应用内。 3、拖拽自定义文件到主窗口,如果进行获取文件路径。

2021-03-27

paint.net-3.36(可运行版本).zip

1、Paint.NET是一个图像和照片处理软件,它由华盛顿州立大学的学生开发和维护并由微软公司提供项目指导,早期定位于MS Paint的免费替代软件,现在逐渐发展为一个功能强大且易用的的图像和照片处理软件,支持图层,无限制的历史记录,特效,和许多实用工具,并且开放源代码和完全免费,界面看起来有点像Photoshop,该软件的开发语言是C#。 2、最后开源的版本应该就是3.3.6,目前i已经不再开源。 3、支持VS2019运行

2020-12-29

深度残差网络.zip

当Microsoft Research发布用于图像识别的深度残差学习时,深度残差网络席卷了深度学习领域。这些网络在ImageNet和COCO 2015竞赛的所有五个主要赛道中均获得了第一名的入围作品,这些竞赛涵盖了图像分类,对象检测和语义分割。此后,ResNets的鲁棒性已被各种视觉识别任务和涉及语音和语言的非视觉任务证明。 压缩包内包含以下参考文档: 1、深度残差学习以进行图像识别— ResNet(Microsoft Research) 2、广泛的残留网络(巴黎埃斯特大学,巴黎高等技术学校) 3、聚集残余转换为深层神经网络- ResNeXt(Facebook的AI研究)

2020-12-26

C++语言编写坦克大战源代码下载(vs2019可运行)

C++语言编写坦克大战小游戏的源代码,控制台运行的,代码很简单,适合新手看着玩,可以用vs2019运行着玩耍。

2020-12-14

K近邻算法进行手写识别的数据集

K近邻算法进行手写识别的数据集,包含手写数字的训练集和测试集,为32*32的数据集合,在代码里转为1024的向量

2020-12-13

windows版本nginx1.7 + rtmp模块

windows下搭建nginx-rtmp服务器,可用来测试obs推流,其它端进行拉流观看。使用方法双击nginx.exe即可。

2020-12-05

Caffe面部检测模型

Caffe面部检测模型,包含res10_300x300_ssd_iter_140000.caffemodel,deploy.prototxt

2020-12-05

自定义采集的图像数据集,浣熊、鱼、猫,用于训练神经网络

自定义采集的图像数据集,浣熊、鱼、猫,用于尝试用自己的数据进行神经网络的训练,提供给大家,虽然质量一般,但是不需要自己一张张去弄了。

2020-12-02

ssd_mobilenet_v1_coco_2017_11_17.zip

tensorflow训练的ssd_mobilenet_v1_coco_2017_11_17目标检测、图像分类模型。

2020-11-21

风景视频,用于图像处理,模拟长曝光

用于图像处理,模拟长曝光,这里使用Python和OpenCV从输入视频中自动创建长时间曝光的图像。给定输入视频,将所有帧平均在一起(平均加权)以创建长时间曝光效果。

2020-10-26

SocketServer.zip

使用supersocket 1.6的可自定义结束符的短连接demo实例,使用windows窗口运行。

2020-05-10

百度地图切图工具ie内核、chromium内核.zip

【2022-08-20更新】之前使用的winform的webbrowser控件,可能会出现兼容性问题,导致地图不显示,现已经更新为webview2替代原webbrowser控件。 【备注】下载后请自行修改html文件夹下的在线地图.html,第7行的ak为自己的ak(注意:因为百度地图api更新,需要申请浏览器端的ak)。 【功能描述】 1、此小软件可以用于生成百度瓦片图层生成。 2、支持多项目管理,可以为每次切图创建项目,方便管理 3、支持从地图上多选所需图片,程序自动下载合并为一张图片,自动记录缩放级别和中心点 4、可根据程序合并的图片,精确处理自己的图片 5、程序支持精准的切割瓦片图并生成demo 6、最高支持百度地图缩放级别20级

2020-03-16

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除