Java描述 数据结构与算法

O(1)⎯⎯取非极端元素

​ 问题: 给定整数子集 S, +∞ > |S| = n ≥ 3 ,从中找出一个元素 a∈S ,使得 a ≠ max(S) 且 a ≠ min(S) 。也就是说,在最大、最小者之外,取出任意一个数。

算法:NonextremeElement(S[], n)

输入:由n个整数构成的集合S

输出:其中的任一非极端元素

{

任取的三个元素x, y, z ∈ S; //既然S是集合,这三个元素必互异

通过比较,找出其中的最小者min{x, y, z}和最大者max{x, y, z};

输出最小、最大者之外的那个元素;

}

思路:

S 是有限集,故其中的最大、最小元素各有且仅有一个。

因此,无论 S 的规 模有多大,在前三个元素 S[0]、S[1]和 S[2]中,必包含至少一个非极端元素。

我们可以取 x = S[0]、y = S[1]和 z = S[ 2],这只需执行三次基本操作,耗费 O(3)时间。

为了确定这三个元 素的大小次序,我们最多需要做三次比较(请读者自己给出证明),也是 O(3)时间。

最后,输出居中 的那个元素只需 O(1)时间。

运行时间为: T(n) = O(3) + O(3) + O(1) = O(7) = O(1)

O(logn)⎯⎯进制转换

​ 问题:给定任一十进制整数,将其转换为三进制表示。比如

​ 23(10) = 212(3)

​ 101(10) = 10202(3)

算法:BaseConversion(n)

输入:十进制整数n

输出:n的三进制表示

{

不断循环,直到n = 0 {

输出 n % 3; //取模

令 n = n/3; //整除

}

}

以 101(10)为例思路:

​ 第一轮循环,输出 101 mod 3 = 2,n = 100/3 = 33; 2

​ 第二轮循环,输出 33 mod 3 = 0,n = 33/3 = 11; 0

​ 第三轮循环,输出 11 mod 3 = 2,n = 11/3 = 3; 2

​ 第四轮循环,输出 3 mod 3 = 0,n = 3/3 = 1; 0

​ 第五轮循环,输出 1 mod 3 = 1,n = 1/3 = 0。 1

​ result=10202(3)

该算法由若干次循环构成, 每一轮循环内部,都只需进行两次基本操作(取模、整除)。

每经过一轮循环,n都至少减少至 1/3。于是,至多经过

1+[log3n]

次循环,即 可减小至 0。

因此,该算法需要运行 O(2×(1+[log3n])) = O(log3n)时间。

鉴于大 O 记号的性质,我们通常会忽略对数函数的常底数。比如这里的底数为常数 3,故通常 将上述复杂度记作 O(logn)。

O(n)⎯⎯数组求和

问题:给定n个整数,计算它们的总和。

算法:Sum(A[], n)

输入:由n个整数组成的数组A[]

输出:A[]中所有元素的总和

{

令s = 0;

对于每一个A[i],i = 0, 1, …, n-1

令s = s + A[i];

输出s;

}

思路

对s的初始化需要O(1)时间。

每一轮循环中只需进行一次累 加运算,这属于基本操作,可以在O(1)时间内完成。

O(1) + O(1)×n = O(n+1) = O(n)

O(n2 )⎯⎯起泡排序

**问题:**冒泡排序

算法:Bubblesort(S[], n)

输入:n个元素组成的一个序列S[],每个元素由[0…n-1]之间的下标确定,元素之间可以比较大小

输出:重新调整S[]中元素的次序,使得它们按照非降次序排列

{

从S[0]和S[1]开始,依次检查每一对相邻的元素;

只要它们位置颠倒,则交换其位置;

反复执行上述操作,直到每一对相邻元素的次序都符合要求;

}

思路:

为了对n个整数排序,该算法的外循环最多需要做n轮。

经过第i轮循环,元素 S[n-i-1]必然就位,i = 0, 1, …, n-1。r

在第i轮外循环中,内循环需要做n-i-1 轮。

在每一轮内循环中, 需要做一次比较操作,另外至多需要做三次赋值操作,这些都属于基本操作,可以在O(4)的时间内 完成。

T(n)=∑i=0n−1(n−i−1)×O(4)=O(2n(n−1))=O(2n2–2n)

鉴于大 O 记号的特性,低次项可以忽略,常系数可以简化为 1,故再次得到 T(n) = O(n^2 )

O(2r )⎯⎯幂函数

**问题:**虑幂函数的计算

算法:PowerBruteForce®

输入:非负整数r

输出:幂2^r

{

power = 1;

while (0 < r–)

power = power * 2;

return power;

}

共需要做r次迭
代,每次迭代只涉及常数次基本操作,故总共需要运行O®时间。

问题的输入规模为n,故有O® = O(2n )。

计算模型

===================================================================

  • 可解性

​ 现代意义上的电子计算机所对应的计算模型,就是所谓的图灵机

  • 有效可解

具体来说就是指存在某一算法,能够在多项式时间以内解决这一问题。反之,若某问题的任一 算法都具有不低于指数的复杂度,则不是有效可解的

  • 下界

在任何一种特定计算模型下,对于任一可有效解决的问题,任何算法的时间复杂度都 不可能低于某一范围,我们称之为该问题在这一计算模型下的复杂度下界,或简称该问题的下界。

递归

=================================================================

当某个方法调用自己时,我们就称之为递归调用(Recursive call )。

线性递归

​ 类方法的每个实例只能递归地调用自己至多一次.

​ 最后一次递归调用被称作递归的“基底”,简称“递归基”。

性质:经过有限的时间后,它必须能够终止。

线性递归式算法都具有如下形式:

  • 检测递归基。首先要检测是否到达递归基,也就是最基本、最简单的情况,在这些平凡情 况下无需做进一步递归调用。

  • 递归处理。如果尚未遇到平凡的情况,则执行一次递归调用。通常,递归调用有多种可能, 此时需要经过进一步的检测以判断具体应按何种方式做递归调用。

递归算法的复杂度分析

递归跟踪法

​ 一种直观的、可视的分析方法,就是将递归方法的执行过程表示为图形的形式.方法的每一实例都对应于一个方框,其中注明了该实例调用的参数;若方法实例 M 调用方法实例 N,则在 M 与 N 对 应的方框之间添加一条有向联线,指明调用与被调用的关系。

递推方程法

对递归的模式进行归纳从而导出关于复杂度函数的递推方程,递归方程的解将给出算法的复杂度。

二分递归

  • 7
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值