RAG实操教程,LangChain + Llama2 | 创造你的个人LLM

image.png 本文将逐步指导您创建自己的RAG(检索增强生成)系统,使您能够上传自己的PDF文件并向LLM询问有关PDF的信息。本教程侧重于图中蓝色部分,即暂时不涉及Gradio(想了解已接入Gradio的,请参考官网)。相关技术栈包括以下内容:

  1. LLM: Llama2
  2. LLM API: llama.cpp service
  3. Langchain:
  4. Vector DB: ChromaDB
  5. Embeding: sentence-Tranformers

核心在于 Langchain,它是用于开发由语言模型支持的应用程序的框架。LangChain 就像胶水一样,有各种接口可以连接LLM模型与其他工具和数据源,不过现在 LangChain 正在蓬勃发展中,许多文件或API改版很多。以下我使用最简单的方式示范。

步骤1. 环境设置

首先设置 Python 环境,我使用 conda 创建环境,并安装以下库,我在 Jupyter 环境完成示例。

arduino复制代码 # python=3.9
 ipykernel
 ipywidgets
 langchain
 PyMuPDF
 chromadb
 sentence-transformers
 llama-cpp-python

步骤2. 读入文件处理并导入数据库。

image.png

首先我们要将外部信息处理后,放到 DB 中,以供之后查询相关知识,这边的步骤对应到上图框起来的部分,也就是橘色的 1. 文本拆分器 和 2. embedding。

a). 使用文件加载器

Langchain 提供了很多文件加载器,总共大约有55种,包括word、csv、PDF、GoogleDrive、Youtube等,使用方法也很简单。这里我创建了一个虚拟人物 Alison Hawk 的 PDF 信息,并使用read in,Alison Hawk 的 PDF 信息。请注意需要安装 PyMuPDFLoader 才能使用。PyMuPDFLoader PyMuPDF

py复制代码 from langchain.document_loaders import PyMuPDFLoader
 loader = PyMuPDFLoader("LangChain/Virtual_characters.pdf")
 PDF_data = loader.load()

文本分割器会将文档或文字分割成一个个 chunk,用以预防文档的信息超过 LLM 的 tokens,有一些研究在探讨如何将 chunk 优化。我们后续文章中讨论。

这两种常用的工具之间的区别在于,如果块大小超过指定阈值,它们会递归地将文本分割为更小的块。LangChain提供这两种方式,并且主要参数如下:

py复制代码 - RecursiveCharacterTextSplitter 
 - CharacterTextSplitter
  • chunk size:决定分割文字时每个内存块中的最大字元数。它指定每个内存块的大小或长度。
  • chunk_overlap:决定分割文字时连续内存块之间重叠的字元数。它指定前一个内存块的多少应包含在下一个内存块中。
py复制代码 from langchain.text_splitter import RecursiveCharacterTextSplitter
 text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=5)
 all_splits = text_splitter.split_documents(PDF_data)

在上面的代码中我们指定chunk_size=100, chunk_overlap=5, 这样的意思就是我们每块的文档中是 100 个字符,chunk_overlap 表示字符重复的个数,这样可以避免语义被拆分后不完整。

c) 加载嵌入模型

然后使用嵌入将步骤(b)分割的块文本转换为向量,LangChain提供了许多嵌入模型的接口,例如OpenAICohereHugging FaceWeaviate等,请参考LangChain官网。

这边我使用Hugging FaceSentence Transformers,它提供了许多种pretrain模型,可以根据你的需求或应用情境选择,我选择,其他model细节可以看到HuggingFace。注意要先安装才能使用。all-MiniLM-L6-v2sentence-Tranformers

py复制代码 from langchain.embeddings import HuggingFaceEmbeddings
 model_name = "sentence-transformers/all-MiniLM-L6-v2"
 model_kwargs = {
   'device': 'cpu'}
 embedding = HuggingFaceEmbeddings(
   model_name=model_name,
   model_kwargs=model_kwargs
 )

d) 将Embedding结果汇入VectorDB

我们会将嵌入后的结果存储在VectorDB中,常见的VectorDB包括ChromaPineconeFAISS等,这里我使用Chroma来实现。ChromaLangChain整合得很好,可以直接使用 LangChain的接口进行操作。

py复制代码 # embed 并存储文本
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值