机器学习是人工智能的一个分支,专注于开发模型和算法,让计算机从数据中学习并从以前的经验中改进,而无需为每项任务进行显式编程。简而言之,机器学习通过从数据中学习,教会系统像人类一样思考和理解。
机器学习 通常是一种从过去的经验中学习并随着时间的推移提高性能的培训系统。机器学习有助于预测大量数据。它有助于提供快速、准确的结果以获得盈利机会。
机器学习的类型
机器学习有多种类型,每种类型都有特殊的特征和应用。机器学习算法的一些主要类型如下:
- 监督机器学习
- 无监督机器学习
- 半监督机器学习
- 强化学习
1.监督机器学习
监督学习的定义是模型在 “标记数据集” 上进行训练。标记数据集具有输入和输出参数。在监督学习中,算法学习在输入和正确输出之间映射点。它具有标记的训练和验证数据集。
我们通过一个例子来理解它。
示例: 考虑一个场景,我们构建图像分类器来区分猫和狗。如果将狗和猫标记图像的数据集提供给算法,机器将学习从这些标记图像中对狗或猫进行分类。当我们输入它以前从未见过的新的狗或猫图像时,它会使用学习到的算法并预测它是狗还是猫。这就是监督学习的 工作原理,尤其是图像分类。
监督学习主要有两类:
- 分类
- 回归
分类
分类: 涉及预测代表离散 类别或标签的分类目标变量。例如,将电子邮件分类为垃圾邮件或非垃圾邮件,或者预测患者是否患有心脏病的高风险。分类算法学习将输入特征映射到预定义的类之一。
以下是一些分类算法:
- 逻辑回归
- 支持向量机
- 随机森林
- 决策树
- K 最近邻 (KNN)
- 朴素贝叶斯
回归
另一方面,回归处理预测代表数值的连续目标变量。例如,根据房屋的大小、位置和便利设施来预测房屋的价格,或预测产品的销量。回归算法学习将输入特征映射到连续数值。
以下是一些回归算法:
- 线性回归
- 多项式回归
- 岭回归
- 套索回归
- 决策树
- 随机森林
监督机器学习的优点
- 监督学习模型可以具有很高的准确性,因为它们是根据标记数据进行训练的。
- 监督学习模型中的决策过程通常是可解释的。
- 它通常可用于预训练模型,这在从头开始开发新模型时可以节省时间和资源。
监督机器学习的缺点
- 它在了解模式方面存在局限性,并且可能会遇到训练数据中不存在的看不见或意外的模式。
- 由于它仅依赖于标记数据,因此可能非常耗时且成本高昂。
- 它可能会导致基于新数据的概括不佳。
监督学习的应用
监督学习有广泛的应用,包括:
- 图像分类:识别图像中的物体、人脸和其他特征。
- 自然语言处理: 从文本中提取信息,例如情感、实体和关系。
- 语音识别:将口语转换为文本。
- 推荐系统:向用户做出个性化推荐。
- 预测分析:预测结果,例如销售、客户流失和股票价格。
- 医疗诊断:检测疾病和其他医疗状况。
- 欺诈检测:识别欺诈交易。
- 自动驾驶车辆:识别环境中的物体并做出反应。
- 电子邮件垃圾邮件检测:将电子邮件分类为垃圾邮件或非垃圾邮件。
- 制造中的质量控制:检查产品是否存在缺