AIGC时代,是基于大模型诞生的新人工智能时代。这一时代带来的机遇,对人才的需求和培养提出了新要求。
如何成为AIGC领域的优秀人才?非研发类背景的文科生、商科生和互联网人才如何转型AIGC?
如何培养自己的能力,使之适应越来越智能化的未来?
AIGC的三个时代变革
当下AIGC的概念非常火热。自20年前开始从事机器学习、自然语言处理到现在,我们历经了整个行业的技术变化,在这里,简单将AI行业的发展分为三个阶段。
AI 1.0时代
AI 1.0时代也就是之前较为传统的AI发展模式,这一阶段的AI表现与发展主要是基于深度学习。
在2012年“深度学习”出现之后,AI迎来了它发展的第一波高潮,开始实现落地。具体的应用包括图像识别,人脸识别,机器翻译等等。
AI 2.0时代
简单来讲,就是目前基于大模型的时代。
这一时代又由两个小阶段组成:基于预训练模型的大模型时代以及基于生成式(如目前的Chat GPT3.5或4.0)的大模型时代。
AGI时代?
Chat GPT自出现以来就收获了社会各界,包括产业界、资本界等等的广泛关注,似乎由于生成式大模型这一本质技术,一个通用的AGI时代已经初见曙光。
但机会之外,AIGC同样不可避免地存在一些痛点,比如生成内容的可控性、可解释性、多模态与跨模态问题。
AIGC领域的职业机遇
(一)紧缺人才与人才画像
1. 紧缺人才
AIGC的时代其实最紧缺的是三类人才。
1)懂算法模型的算法工程师
这一类工程师懂得AIGC的基本原理,懂得构建大模型,如何去做训练微调等等。
2)产品经理
对于企业来说,大模型最终需要落到垂域。因此第二类我们特别需要的人才,是在AIGC垂域里面的产品经理。
3)懂AIGC技术的跨领域的解决方案人才
例如在医疗早筛、汽车、智能质检、智能制造、游戏等行业的人才,如果既了解行业又掌握基础技术,能够综合两个领域提出解决方案,那么这种人才同样是比较紧缺的。
2. AIGC行业的人才画像
1)算法工程师
当下最紧缺的依然是能够懂得构建预训练大模型,微调大模型,把大模型应用至垂域行业里做内核级研发的算法工程师人才。
目前这类人才一般来自于高校的实验室,当然也有比较好的人才来自于大学本科,这些本科生很早地切入到AIGC领域,会通过构建算法,做研发等等来训练大模型。
2)产品经理
第二类就是产品经理,既懂AIGC的技术,又懂行业的业务,又懂用户。基于这些素质,去构建用户在某垂域行业场景下的刚需应用的产品和服务。
3)AIGC解决方案架构师
既是技术专家,同时也懂这个行业的业务,帮助这个行业去构建解决方案,最终解决用户的问题。
(二)文科生/商科生
如何加入AIGC行业
一定要研发类背景才能加入这一行业是一个误导。
我们不能认为AIGC行业一定是理科生或算法类的人加入,其实,文科生和商科生也具备非常大的优势。
他们的优势在哪里?
对于文科生和商科生而言,如果非常懂得用户的使用习惯、刚需以及行业的特点,你可以加入AIGC行业,做我刚才提到的产品经理。
此外,也可以在文科生及商科生的行业基础上,补充一些技术或者研发方面的基本原理,做解决方案架构师。
垂域场景中,例如营销、市场等等,其实都是适合文科生和商科生的,他们的特长优势是了解行业,了解用户以及了解市场,这在AIGC行业里是非常抢手的。
(三)互联网人才转行AIGC
的注意事项
首先,AIGC不是一个行业,而是一个赋能行业的技术。
例如互联网人才中的程序员想要转入AIGC赛道,他们在互联网工作中可能大部分是在使用Python等语言,比方说Java程序等等,这些技能掌握能够使他们很自然地转入AIGC赛道。
运营岗位的转变也并不困难,AIGC有一个类似互联网的特点,就是随着无限的增值,边际效应会越来越低。
整体而言,互联网和AIGC的思维其实是一脉相承的,他们的产品最终都是瞄准用户。互联网人才只要去熟悉AIGC的技术特点和行业特点,思维上的转变就会是自然的。
(四)未来智能时代所需要的人才
和当下是否存在差异
在大模型的智能时代中,人才更需要亲和的沟通能力和逻辑能力,而不是把这个能力全部交给AI大模型。
人才构建大模型或者AI产品的时候,根本的刚需是了解这个行业中的痛点问题并去解决,这样才能产生价值,才能实现落地。有了价值,才有生命力。
而AI只是一个辅助手段,我们可以把它当成一个助手,但不能因为拥有这个助手就丧失自己的能力,而是要利用它增强自己的能力。
此外,我们还需要重视创新能力。如果只是复制,人云亦云,那么在大模型时代,你的竞争力会越来越差。
与此同时,情商、逻辑能力、思辨能力,这些都很重要。
(五)如何培养自己的能力
使之适应越来越智能化的未来
这个问题和第四个问题是一脉相承的。
1. 我们要拥有快速学习的能力
技术革命的节奏越来越快,这就告诫我们必须培养快速学习这一核心能力,否则就会跟不上时代的变化。
2. 学会适应
我们需要适应AI的辅助,利用AI来增强自己,把它真正作为一个工具。
总的来说,快速学习的能力、创新能力和驾驭使用AI工具的能力,这三项能力是我认为需要增强的。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
