栈和队列部分(10)
- 设计一个有getMin功能的栈(士★☆☆☆)
- 由两个栈组成的队列(尉★★☆☆)
- 如何仅用递归函数和栈操作逆序一个栈(尉★★☆☆)
- 猫狗队列(士★☆☆☆)
- 用一个栈实现另一个栈的排序(士★☆☆☆)
- 用栈来求解汉诺塔问题(校★★★☆)
- 生成窗口最大值数组(尉★★☆☆)
- 构造数组的MaxTree(校★★★☆)
- 求最大子矩阵的大小(校★★★☆)
- 最大值减去最小值小于或等于num的子数组数量(校★★★☆)
链表问题(20)
- 打印两个有序链表的公共部分(士★☆☆☆)
- 在单链表和双链表中删除倒数第K 个节点(士★☆☆☆)
- 删除链表的中间节点和a/b 处的节点(士★☆☆☆)
- 反转单向和双向链表(士★☆☆☆)
- 反转部分单向链表(士★☆☆☆)
- 环形单链表的约瑟夫问题(原问题:士★☆☆☆进阶:校★★★☆)
- 判断一个链表是否为回文结构(普通解法士★☆☆☆)(进阶解法尉★★☆☆)
- 将单向链表按某值划分成左边小、中间相等、右边大的形式(尉★★☆☆)
- 复制含有随机指针节点的链表(尉★★☆☆)
- 两个单链表生成相加链表(士★☆☆☆)
- 两个单链表相交的一系列问题(将★★★★)
- 将单链表的每K个节点之间逆序(尉★★☆☆)
- 删除无序单链表中值重复出现的节点(士★☆☆☆)
- 在单链表中删除指定值的节点(士★☆☆☆)
- 将搜索二叉树转换成双向链表(尉★★☆☆)
- 单链表的选择排序(士★☆☆☆)
- 一种怪异的节点删除方式(士★☆☆☆)
- 向有序的环形单链表中插入新节点(士★☆☆☆)
- 合并两个有序的单链表(士★☆☆☆)
- 按照左右半区的方式重新组合单链表(士★☆☆☆)
二叉树问题(24)
- 分别用递归和非递归方式实现二叉树先序、中序和后序遍历(校★★★☆)
- 打印二叉树的边界节点(尉★★☆☆)
- 如何较为直观地打印二叉树(尉★★☆☆)
- 二叉树的序列化和反序列化(士★☆☆☆)
- 遍历二叉树的神级方法(将★★★★)
- 在二叉树中找到累加和为指定值的最长路径长度(尉★★☆☆)
- 找到二叉树中的最大搜索二叉子树(尉★★☆☆)
- 找到二叉树中符合搜索二叉树条件的最大拓扑结构(校★★★☆)
- 二叉树的按层打印与ZigZag打印(尉★★☆☆)
- 调整搜索二叉树中两个错误的节点(原问题:尉★★☆☆)(进阶问题:将★★★★)
- 判断t1 树是否包含t2 树全部的拓扑结构(士★☆☆☆)
- 判断t1 树中是否有与t2 树拓扑结构完全相同的子树(校★★★☆)
- 判断二叉树是否为平衡二叉树(士★☆☆☆)
- 根据后序数组重建搜索二叉树(士★☆☆☆)
- 判断一棵二叉树是否为搜索二叉树和完全二叉树(士★☆☆☆)
- 通过有序数组生成平衡搜索二叉树(士★☆☆☆)
- 在二叉树中找到一个节点的后继节点(尉★★☆☆)
- 在二叉树中找到两个节点的最近公共祖先(原问题:士★☆☆☆)(进阶问题:尉★★☆☆再进阶问题:校★★★☆)
- Tarjan算法与并查集解决二叉树节点间最近公共祖先的批量查询问题(校★★★☆)
- 二叉树节点间的最大距离问题(尉★★☆☆)
- 先序、中序和后序数组两两结合重构二叉树(先序与中序结合士★☆☆☆)(中序与后序结合士★☆☆☆先序与后序结合尉★★☆☆)
- 通过先序和中序数组生成后序数组(士★☆☆☆)
- 统计和生成所有不同的二叉树(尉★★☆☆)
- 统计完全二叉树的节点数(尉★★☆☆)
递归和动态规划(17)
- 斐波那契系列问题的递归和动态规划(将★★★★)
- 矩阵的最小路径和(尉★★☆☆)
- 换钱的最少货币数(尉★★☆☆)
- 换钱的方法数(尉★★☆☆)
- 最长递增子序列(校★★★☆)
- 汉诺塔问题(校★★★☆)
- 最长公共子序列问题(尉★★☆☆)
- 最长公共子串问题(校★★★☆)
- 最小编辑代价(校★★★☆)
- 字符串的交错组成(校★★★☆)
- 龙与地下城游戏问题(尉★★☆☆)
- 数字字符串转换为字母组合的种数(尉★★☆☆)
- 表达式得到期望结果的组成种数(校★★★☆)
- 排成一条线的纸牌博弈问题(尉★★☆☆)
- 跳跃游戏(士★☆☆☆)
- 数组中的最长连续序列(尉★★☆☆)
- N皇后问题(校★★★☆)
字符串问题(23)
- 判断两个字符串是否互为变形词(士★☆☆☆)
- 字符串中数字子串的求和(士★☆☆☆)
- 去掉字符串中连续出现k 个0 的子串(士★☆☆☆)
- 判断两个字符串是否互为旋转词(士★☆☆☆)
- 将整数字符串转成整数值(尉★★☆☆)
- 替换字符串中连续出现的指定字符串(士★☆☆☆)
- 字符串的统计字符串(士★☆☆☆)
- 判断字符数组中是否所有的字符都只出现过一次(按要求1 实现的方法士★☆☆☆)(按要求2 实现的方法尉★★☆☆)
- 在有序但含有空的数组中查找字符串(尉★★☆☆)
- 字符串的调整与替换(士★☆☆☆)
- 翻转字符串(士★☆☆☆)
- 数组中两个字符串的最小距离(尉★★☆☆)
- 添加最少字符使字符串整体都是回文字符串(校★★★☆)
- 括号字符串的有效性和最长有效长度(原问题士★☆☆☆)(补充问题尉★★☆☆)
- 公式字符串求值(校★★★☆)
- 0 左边必有1 的二进制字符串数量(校★★★☆)
- 拼接所有字符串产生字典顺序最小的大写字符串(校★★★☆)
- 找到字符串的最长无重复字符子串(尉★★☆☆)
- 找到被指的新类型字符(士★☆☆☆)
- 最小包含子串的长度(校★★★☆)
- 回文最少分割数(尉★★★☆)
- 字符串匹配问题(校★★★☆)
- 字典树(前缀树)的实现(尉★★☆☆)
大数据和空间限制(6)
- 认识布隆过滤器(尉★★☆☆)
- 只用2 GB 内存在20 亿个整数中找到出现次数最多的数(士★☆☆☆) .
- 40 亿个非负整数中找到没出现的数(尉★★☆☆)
- 找到100 亿个URL 中重复的URL 以及搜索词汇的top K 问题(士★☆☆☆)
- 40 亿个非负整数中找到出现两次的数和所有数的中位数(尉★★☆☆)
- 一致性哈希算法的基本原理(尉★★☆☆)
位运算(6)
- 不用额外变量交换两个整数的值(士★☆☆☆)
- 不用任何比较判断找出两个数中较大的数(校★★★☆)
- 只用位运算不用算术运算实现整数的加减乘除运算(尉★★☆☆)
- 整数的二进制表达中有多少个1 (尉★★☆☆)
- 在其他数都出现偶数次的数组中找到出现奇数次的数(尉★★☆☆)
- 在其他数都出现k 次的数组中找到只出现一次的数(尉★★☆☆)
数组和矩阵问题(26)
- 转圈打印矩阵(士★☆☆☆)
- 将正方形矩阵顺时针转动90 °(士★☆☆☆)
- "之"字形打印矩阵(士★☆☆☆)
- 找到无序数组中最小的k 个数(O(Nlogk)的方法尉★★☆☆)(O(N)的方法将★★★★)
- 需要排序的最短子数组长度(士★☆☆☆)
- 在数组中找到出现次数大于N/K 的数(校★★★☆)
- 在行列都排好序的矩阵中找数(士★☆☆☆)
- 最长的可整合子数组的长度(尉★★☆☆)
- 不重复打印排序数组中相加和为给定值的所有二元组和三元组(尉★★☆☆)
- 未排序正数数组中累加和为给定值的最长子数组长度(尉★★☆☆)
- 未排序数组中累加和为给定值的最长子数组系列问题(尉★★☆☆)
- 未排序数组中累加和小于或等于给定值的最长子数组长度(校★★★☆)
- 计算数组的小和(校★★★☆)
- 自然数数组的排序(士★☆☆☆)
- 奇数下标都是奇数或者偶数下标都是偶数(士★☆☆☆)
- 子数组的最大累加和问题(士★☆☆☆)
- 子矩阵的最大累加和问题(尉★★☆☆)
- 在数组中找到一个局部最小的位置(尉★★☆☆)
- 数组中子数组的最大累乘积(尉★★☆☆)
- 打印N 个数组整体最大的Top K(尉★★☆☆)
- 边界都是1 的最大正方形大小(尉★★☆☆)
- 不包含本位置值的累乘数组(士★☆☆☆)
- 数组的partition 调整(士★☆☆☆)
- 求最短通路值(尉★★☆☆)
- 数组中未出现的最小正整数(尉★★☆☆)
- 数组排序之后相邻数的最大差值(尉★★☆☆)
其他问题(34)
- 从5 随机到7 随机及其扩展(原问题尉★★☆☆补充问题尉★★☆☆)(进阶问题校★★★☆)
- 一行代码求两个数的最大公约数(士★★☆☆)
- 有关阶乘的两个问题(原问题尉★★☆☆进阶问题校★★★☆)
- 判断一个点是否在矩形内部(尉★★☆☆)
- 判断一个点是否在三角形内部(尉★★☆☆)
- 折纸问题(尉★★☆☆)
- 蓄水池算法(尉★★☆☆)
- 设计有setAll功能的哈希表(士★☆☆☆)
- 最大的leftMax与rightMax之差的绝对值(校★★★☆)
- 设计可以变更的缓存结构(尉★★☆☆)
最全的Linux教程,Linux从入门到精通
======================
-
linux从入门到精通(第2版)
-
Linux系统移植
-
Linux驱动开发入门与实战
-
LINUX 系统移植 第2版
-
Linux开源网络全栈详解 从DPDK到OpenFlow
第一份《Linux从入门到精通》466页
====================
内容简介
====
本书是获得了很多读者好评的Linux经典畅销书**《Linux从入门到精通》的第2版**。本书第1版出版后曾经多次印刷,并被51CTO读书频道评为“最受读者喜爱的原创IT技术图书奖”。本书第﹖版以最新的Ubuntu 12.04为版本,循序渐进地向读者介绍了Linux 的基础应用、系统管理、网络应用、娱乐和办公、程序开发、服务器配置、系统安全等。本书附带1张光盘,内容为本书配套多媒体教学视频。另外,本书还为读者提供了大量的Linux学习资料和Ubuntu安装镜像文件,供读者免费下载。
本书适合广大Linux初中级用户、开源软件爱好者和大专院校的学生阅读,同时也非常适合准备从事Linux平台开发的各类人员。
需要《Linux入门到精通》、《linux系统移植》、《Linux驱动开发入门实战》、《Linux开源网络全栈》电子书籍及教程的工程师朋友们劳烦您转发+评论
详情docs.qq.com/doc/DSmdCdUNwcEJDTXFK