拉近距离(洛谷)

题目背景

我是源点,你是终点。我们之间有负权环。 ——小明

题目描述

在小明和小红的生活中,有 N 个关键的节点。有 M 个事件,记为一个三元组 (Si​,Ti​,Wi​),表示从节点 Si​ 有一个事件可以转移到 Ti​,事件的效果就是使他们之间的距离减少 Wi​。

这些节点构成了一个网络,其中节点 11 和 N 是特殊的,节点 11 代表小明,节点 N 代表小红,其他代表进展的阶段。所有事件可以自由选择是否进行,但每次只能进行当前节点邻接的。请你帮他们写一个程序,计算出他们之间可能的最短距离。

输入格式

第一行,两个正整数 N,M。

之后 M 行,每行 33 个空格隔开的整数 Si​,Ti​,Wi​。

输出格式

一行,一个整数表示他们之间可能的最短距离。如果这个距离可以无限缩小,输出Forever love

输入输出样例

输入 #1复制

3 3
1 2 3
2 3 -1
3 1 -10

输出 #1复制

-2
#include<bits/stdc++.h>
#define int long long
 
using namespace std;
 
const int N = 1e5+10;
 
int n,m;
int suc = 1;
int dis[N],vis[N],cnt[N];

vector<pair<int,int> > e[N];

int spfa(int A)
{
	for(int i=1;i<=n;i++)
	{
		dis[i] = 1e18;
		vis[i] = 0;
		cnt[i] = 0;
	}
	queue<int > q;
	q.push(A);
	dis[A] = 0;
	vis[A] = 1;
	while(q.size())
	{
		int now = q.front();
		q.pop();vis[now] = 0; 
		for(auto t:e[now])
		{
			int spot = t.first,w = t.second;
			if(dis[spot]>dis[now]-w)
			{
				dis[spot] = dis[now]-w;
				cnt[spot] = cnt[now]+1;
				if(cnt[spot]>=n)
				{
					suc = 0;
					return false;
				}
				if(vis[spot]==0)
				{
					vis[spot] = 1;
					q.push(spot);
				}
			}
		}
	}
	return true;
}

signed main()
{
	cin>>n>>m;
	while(m--)
	{
		int a,b,c;
		cin>>a>>b>>c;
		e[a].push_back({b,c});
	}
	spfa(1);
	int a = dis[n];
	spfa(n);
	int b = dis[1];
	if(suc==0) cout<<"Forever love";
	else cout<<min(a,b);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值