开题报告
专业名称 | 数据科学与大数据技术 | 学生姓名 | ||
指导教师 | 学 号 | |||
课题名称 | 基于Spark的抖音用户行为数据分析系统 | 开题日期 | 2023.11.30 | |
随着智能手机的普及和移动互联网的发展,短视频应用如抖音等逐渐成为人们日常生活中不可或缺的一部分。抖音作为一个短视频分享平台。拥有庞大的用户群体和广泛的影响力。用户在抖音上的行为数据不仅反映了用户的兴趣和偏好,还反映了社会文化和价值观的变化。因此,对抖音用户行为数据进行深入研究具有重要的现实意义和理论价值。 2.课题研究现状 目前,国内外学者已经对短视频应用用户行为数据进行了大量研究。研究主要集中在用户行为特征、兴趣爱好、社交网络、信息传播等方面。这些研究为进一步理解抖音用户行为提供有益的参考。然而,现有的研究还存在一些不足之处,如数据来源的可靠性、研究方法的科学性、结论的可信度等方面需要进一步提高。 | ||||
具体研究内容如下: 1.收集资料:根据课题的所研究的内容,通过知网查阅国内外相关文献资料与研究课题的成果,了解课题大致的框架内容。 2.针对课题内容,学习课题所需的相关技术,如掌握Linux常用命令和理解协同过滤算法的核心思想,最重要的是规划好整个课题项目的流程。 3.设计与实现:安装Linux、MySQL、Spark、IntelliJ IDEA等课题所需软件,并且搭建好大数据环境以及学习相关软件的使用。 4.平台实现:设计并实现一个用户分析系统,在MySQL中创建数据库,使用Scala语言开发Spark程序进行用户数据分析,使用eclipse开发动态网页可视化呈现电影推荐结果。 采用的方法如下: 本系统基于Spark的大数据平台、以协同过滤为核心推荐算法的电影推荐系统。具体的实现过程如下:首先,用Spark把准备好的用户数据集抽取到HDFS中,接下来使用Scala语言编写Spark程序,紧接着读取HDFS上的用户数据集进行模型训练,再利用可视化展示用户行为数据模型,把用户行为数据存入MySQL数据库中,最后利用eclipse搭建动态网页,把保存在MySQL数据库中的用户行为数据用网页的形式可视化呈现给用户。 | ||||
[1]张坤. 基于Spark机器学习的电影推荐系统的设计与实现[D].南京邮电大学,2022. [2]张鹏飞. 基于数据挖掘的个性化电影推荐系统设计与实现[D].杭州电子科技大学,2022. [3]朱本瑞. 基于Spark的离线与实时的电影推荐系统设计与实现[D].南京信息工程大学,2022. [4]邓介一,陈兰兰,梁会军.基于Scala的电影推荐系统的设计与实现[J].工业控制计算机,2022,35(05):104-106. [5]朱炳旭,叶传奇,王君洋,李应霆,李玉进.基于Spark大数据处理的电影推荐系统设计与实现[J].无线互联科技,2021,18(11):54-55. [6]杨浪. 基于Spark的电影推荐系统设计与实现[D].北京邮电大学,2021. [7]孙成.基于Spark的电影推荐系统的设计与实现[J].电脑知识与技术,2020,16(33):80-81+96. [8]雷畅. 基于Spark的电影推荐系统的设计与实现[D].华中科技大学,2019. [9]张玉叶.基于协同过滤的电影推荐系统的设计与实现[J].电脑知识与技术,2019,15(06):70-73. [10]林子雨.大数据技术原理与应用:概念、存储、处理、分析与应用[M].北京:人民邮电出版社,2017:5-1 [11]刘欢天. 基于协同过滤的分布式电影推荐系统设计与实现[D].西安电子科技大学,2015. [12]Cui Bei Bei. Design and Implementation of Movie Recommendation System Based on Knn Collaborative Filtering Algorithm[J]. ITM Web of Conferences,2017,12. | ||||
指导教师意见(对本课题的深度、广度及工作量的意见及开题是否通过): 通过 □ 完善后通过 □ 未通过 □ 指导教师签名: 年 月 日 | ||||
院(系)主任意见:
签名: 年 月 日 |
注:开题报告用A4纸打印装订在毕业论文(设计)任务书后,学生可根据开题报告的长度加页。
开题是否通过请指导教师在□内打“√”。