基于大数据的在线购物商城推荐系统的设计与实现(需求文档)

       菏泽学院本科生毕业设计(论文)开题报告

毕业设计(论文)题目

基于大数据的在线购物商城推荐系统的设计与实现

题目类型

应用

题目来源

指导教师拟定

系    别

计算机与信息工程系

专    业

网络工程.net

指导教师

职    称

讲师

姓    名

年    级

2020级

学    号

  • 立题依据(国内外研究进展或选题背景、研究意义等)

随着互联网技术的发展和电子商务的普及,网上商城为消费者提供了方便快捷的购物方式。通过研究和优化网上商城系统,可以进一步提升用户的购物体验,满足消费者对购物便捷性、时尚性和个性化的需求。基于大数据的在线购物商城推荐系统的设计与实现有助于推动电子商务行业的创新和发展。随着技术的进步和市场需求的变化,网上商城将不断演进和完善,为整个电子商务行业提供新的发展机遇。基于大数据的在线购物商城推荐系统的设计与实现的研究意义在于提升消费者购物体验,拓展销售渠道,降低运营成本,推动电子商务发展,促进市场价格透明化,满足消费者多样化需求,以及推动相关领域研究。随着互联网技术的不断进步和电子商务的普及,基于大数据的在线购物商城推荐系统的设计与实现的研究将具有越来越重要的意义。

二、研究的主要内容及预期目标

1. 用户行为分析

   推荐系统首先需要收集和分析用户的浏览历史、购买记录、评价反馈等行为数据。通过数据挖掘技术,如用户聚类分析,可以了解不同用户群体的偏好特征。

2. 协同过滤

   协同过滤是推荐系统中常用的方法,包括用户基于和物品基于的协同过滤。它通过挖掘用户之间的相似度或物品之间的相似度来预测用户的未知的偏好。

3. 内容推荐

   内容推荐基于商品的属性和信息来推荐商品。它使用物品的特征信息,如风格、颜色、价格等,来匹配用户的喜好。

4. 机器学习算法

   为了提高推荐的准确性和效率,通常会应用机器学习算法,如决策树、支持向量机(SVM)、神经网络等,来训练推荐模型。

5. 实时反馈循环

   推荐系统应当能够实时收集用户对推荐内容的反馈,并快速调整推荐策略。这一循环通过用户交互数据来不断优化推荐质量。

6. 多任务学习

   为了提升推荐系统的泛化能力和鲁棒性,可以采用多任务学习方法。 

7. 大数据技术栈

   使用如Hadoop、Spark等大数据处理框架来存储、处理和分析海量数据。数据库管理系统(如MySQL)则用于存储用户数据和商品数据。

三、研究方案(思路)

第一步:搜集资料,分析问题解决方法。

第二步:列出解决方案的初步框架。

第三步:对框架的各模块分析、细化。

第四步:开始设计个模块,检验模块。

第六步:集成各模块。

第七步:整体测试。

四、论文进度安排

2023.12月初--2023.12月中旬,根据选题查询文献资料。

2023.12月中旬--2023.12月底,完成开题报告。

2024.1月--2024.2月中旬,完成系统总体设计和主要功能模块实现。

2024.4月初,进行中期检查,完成论文初稿的撰写。

2024.4月初--20204.4月20,论文修改完善,提交答辩稿。

五、主要参考文献

[1] 朱辉生  .数据库原理及应用实验教程.南京:南京大学出版社,2021.06

[2] 赵计刚.Java微服务实战.北京:电子工业出版社,2017.11

[3] 朱传明  .Axure RP8网站与App原型设计经典实例教程.北京:人民邮电出版社,2017.09

[4] 于启红 刘杰  .软件工程专业导论.南京:南京大学出版社,2021.08

[5] 赵志建 蒋继冬 .Web前端开发基础. 苏州:苏州大学出版社,2022.03

[6] 耿庆阳.基于Spring Boot与Vue的电子商城设计与实现.西安石油大学.2020-11-16——2020-12-15

[7]朱琨日.高性能智能商城系统架构设计与实现.桂林电子科技大学.2023-01-16——2023-02-15

注:1. 题目类型:理论、实验、应用、综合;2. 题目来源:指导教师拟定、自选、其它;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值