南宁学院 2023 届本科毕业论文(设计)开题报告
毕业设计(论文)题目 | 基于智能推荐的企业用车系统的设计与实现 | ||||
选题类型 | 是否在实验实习、工程实践和社会调查中完成的 (√)是 ( )否 | ||||
学 院 | 人工智能学院 | 年级专业 | 2019级计算机科学与技术 | ||
姓 名 | 学 号 | ||||
指导教师 | |||||
开题报告(立题依据、研究的主要内容及预期目标、研究方案、论文进度安排、主要参考文献) 1立题依据 1.1毕业论文(设计)的研究背景 在当今快节奏的商业环境中,企业用车管理成为了一个重要的议题。传统的用车方式往往存在着不便捷、低效率和高成本等问题,因此设计和实现基于智能推荐的企业用车系统具有重要意义。通过引入智能推荐算法,该系统可以根据员工的出行需求和历史数据,快速且精准地推荐最佳路线、车辆选择和行程规划,提升员工的出行体验。同时,智能推荐还可以根据员工的个人喜好和习惯,为其提供个性化的用车推荐,提高用车的便利性和满意度。此外,该系统还能够进行费用管理和数据分析,帮助企业进行用车费用控制和优化,提升企业的用车效率和经济效益。因此,研究基于智能推荐的企业用车系统的设计与实现,对于提升企业用车管理水平和服务质量具有重要的实际应用价值。 1.2毕业论文(设计)研究的目的和意义 设计和实现基于智能推荐的企业用车系统的目的是为了提升企业用车管理的效率、便捷性和成本控制能力。通过引入智能推荐算法,系统可以根据员工的出行需求和历史数据,快速、准确地推荐最佳路线、车辆选择和行程规划,从而节约时间和资源。此外,系统还可以根据个人习惯和喜好为员工提供个性化的用车推荐,提升员工的满意度和工作效率。通过自动化的预订和调度功能,系统可以简化用车流程,减少人为错误和延误,提高整体运营效率。综上所述,该系统的目的是通过智能推荐技术改进企业用车管理流程,提供更优化、智能化的用车服务。 基于智能推荐的企业用车系统的实现具有重要的意义。首先,该系统可以提高企业的用车管理效率,节省企业资源和时间成本。通过智能推荐算法的应用,系统可以优化行程规划和车辆调度,减少空驶和等待时间,提高车辆利用率和员工的出行效率。其次,系统可以提供个性化的用车推荐,根据员工的偏好和习惯,为其定制最佳的出行方案,提高员工的满意度和工作效率。此外,系统还可以帮助企业进行费用管理和数据分析,根据实时的统计报表和分析结果,优化用车策略,降低用车成本并提升经济效益。综上所述,基于智能推荐的企业用车系统的实现对于企业用车管理的改进和优化具有重要的意义。 1.3与本课题相关的国内外研究现状述评 国内研究现状: 国内在企业用车领域的研究主要集中在传统的用车管理和调度技术上,较少涉及智能推荐方面。大多数企业使用的是基于人工操作的用车系统,存在着调度效率低、用车流程不便等问题。 近年来,国内出现了一些基于智能算法的企业用车系统的研究。这些系统通常采用数据挖掘和机器学习技术,通过分析员工的出行记录和偏好,为其推荐最佳的用车方案。然而,这些研究还处于初级阶段,缺乏完整的实际应用和系统验证。 在国内,一些企业用车管理平台开始尝试引入智能推荐算法,以提供更加个性化和高效的用车服务。这些平台主要关注于行程规划、车辆调度和费用管理等方面,以提高企业用车管理的效率和满意度。 国内的研究也开始关注企业用车系统与其他相关领域的融合,如智能交通系统、车联网技术等。这种跨领域的研究对于进一步提升企业用车系统的智能化和自动化水平具有重要意义。 国外研究现状: 在国外,一些先进国家已经开始研究和应用基于智能推荐的企业用车系统。这些系统采用先进的机器学习和数据分析技术,能够精确预测员工的出行需求,并为其推荐最佳的用车方案。 国外的研究主要关注于智能推荐算法在企业用车管理中的应用,如基于深度学习的出行路线规划、基于大数据分析的车辆调度等。这些研究不仅提高了用车管理的效率,还改善了员工的出行体验。 一些国外企业用车管理平台已经实现了智能推荐功能,并且取得了良好的效果。这些平台通过不断优化算法和改进系统功能,提供个性化的用车服务,同时降低了用车成本。 此外,国外的研究还将企业用车系统与其他移动出行方式进行整合,如共享汽车、出租车服务等。这种综合性的研究可以更好地满足不同员工的出行需求,提高出行的灵活性和便利性。 2研究的主要内容及预期目标 2.1毕业论文(设计)研究的主要内容 用户管理:系统需要支持企业内部员工和管理人员的账号管理,包括注册、登录、权限管理等功能。 车辆管理:系统需要记录并管理企业拥有的车辆信息,包括车辆品牌、型号、车牌号、里程数等。同时,还需要实时监测车辆的位置和状态,以及进行维护和保养提醒。 行程管理:系统应该能够记录员工的出行需求,并根据员工的出发地点、目的地、时间等因素,使用智能算法进行行程规划和推荐最佳路线。 预订与调度:系统应该提供预订用车的功能,允许员工选择合适的车辆和时间段,并根据车辆的可用性和员工的优先级进行调度。 智能推荐:系统应该能够分析员工的出行习惯和历史数据,并基于这些信息为员工提供个性化的用车推荐,例如推荐常用的出行路线、常用车辆等。 费用管理:系统应该能够自动计算员工的用车费用,并提供相应的报销和结算功能。 安全管理:系统需要确保员工的安全,包括对车辆的实时监测、行驶轨迹记录、紧急事故报警等功能。 数据分析与优化:系统应该能够收集和分析各类数据,为企业提供用车的统计报表、费用分析、出行效率评估等信息,以便进行优化和改进。 2.2毕业论文(设计)研究的预期目标 预期目标是提供准确高效的行程规划和车辆调度。通过智能推荐算法,系统可以根据员工的出行需求和历史数据,快速而准确地推荐最佳路线、车辆选择和行程安排,以实现行程的优化和时间的节约。系统应该根据员工的偏好、习惯和历史记录,为其提供个性化的用车推荐,包括常用路线、常用车辆等,以满足员工的个性化需求,并提高用户的满意度和体验。系统应该能够自动计算用车费用,并提供相应的报销和结算功能。同时,系统还应该收集和分析各类数据,为企业提供用车的统计报表、费用分析、出行效率评估等信息,以便进行进一步的优化和改进。系统应该提供简单易用的界面和操作流程,方便员工进行预订、调度和管理。同时,系统还需要确保员工的安全,包括对车辆的实时监测、行驶轨迹记录、紧急事故报警等功能。 综上所述,基于智能推荐的企业用车系统的预期目标是通过智能化、个性化、高效化以及安全化的设计和实现,提升企业用车管理的水平和效果,为员工提供更好的用车服务体验。 3研究方案 3.1毕业论文(设计)的研究方法 为了更好完善系统使用了以下研究方法: (1)文献阅读法:通过查阅相关领域的文献资料,如学术论文、期刊文章、专业书籍等,了解国内外关于智能推荐和企业用车管理的研究现状、理论框架、方法和技术应用。这种方法可以帮助研究者建立全面的理论基础,了解最新的研究动态,并从中获取灵感和启示。 (2)比较法:通过对不同的企业用车系统进行比较和分析,评估其优缺点,找出各个系统的共同点和差异,进而确定最适合的设计方案。这种方法主要通过收集和整理现有的企业用车系统案例和经验,进行横向或纵向的比较研究,以发现问题和改进空间。 (3)模拟法:通过构建模型和仿真实验,模拟企业用车系统的运行场景,验证设计方案的可行性和效果。利用计算机技术和数学建模方法,对系统的各个模块进行仿真测试,评估其性能和效果。这种方法可以帮助研究者在实际设计前预先发现问题,并进行优化调整。 3.2毕业论文(设计)研究的预期成果 (1)实现基于智能推荐的企业用车的系统; (2)毕业论文一份。 3.3研究的技术路线及步骤 研究的技术路线如下图所示: 项目开发严格遵守软件工程的开发设计思路,可以分为需求分析、设计、编码和测试等几个阶段。 (1) 需求分析:对课题进行可行性分析,反复认证,最后得出一个明确可行的方案,撰写可行性分析报告。获取系统的功能和性能需求,对课题的整体把握,撰写需求分析文档。 (2) 设计:首先进行概要设计,将系统进行模块划分,画出系统结构图,并且给予必要的说明,撰写概要设计文档。然后进行详细设计,撰写详细设计文档,编制整个系统程序。 (3) 编码:根据详细设计要求,进行各个功能模块的程序编写。 (4) 测试:当程序完成后,基于测试用例对系统的功能和性能进行全面测试,找出程序中的错漏,并基于测试结果对系统进行逐步的完善、修改。 4 毕业论文(设计)进度安排 2023年11月15日~28日(第七学期第11~12周):下达任务书。 2023年11月29日~12月26日(第七学期第13周~第16周):查阅与课题相关的文献及资料,撰写并提交开题报告。 2023年12月27日~2024年1月16日(第七学期第17周~第七学期第19周):完成本课题的需求分析,功能设计。 2023年1月17日~2024年2月27日(第七学期第19周~第八学期第1周):开展软件设计开发与调试,开始撰写毕业设计(论文)初稿。 2023年2月28日~2024年3月13日,(第八学期第1~2周)工作进度和质量检查,处理有关问题。 2023年3月14日~2024年3月20日(第八学期第3周):中期检查,撰写并提交中期考核表。 2023年3月21日~2024年4月24日(第八学期第4周~第8周):完成软件设计开发与测试,对毕业设计进行修改、完善、论文定稿。 2023年4月25日~2024年5月1日(第八学期第9周)学术不端行为检查;提交最终毕业论文和承诺书、学术不端行为检查结果“简洁版”,准备答辩。 2023年5月2日~2024年5月15日(第八学期第10周~第11周):规范审查、指导教师和主审老师评阅。 2023年5月16日~2024年5月22日(第八学期第12周):进行小组答辩、复审答辩,确定优秀论文。 5主要参考文献 (要求近三年,不少于18篇) [1] 田伟,刘东. 基于协同过滤的档案资源智能推荐算法研究 [J]. 兰台世界, 2024, (02): 84-88. [2] Lima L D ,Nogueira R ,Liu J , et al. How Appropriate Are Recommendations of Online Chat-Based Artificial Intelligence (ChatGPT) to Common Questions on Ventral Hernia Repair? [J]. Journal of laparoendoscopic & advanced surgical techniques. Part A, 2024, [3] 胡小勇,孙硕,穆肃. 基于画像技术的教师研修路径智能推荐研究 [J]. 电化教育研究, 2024, 45 (02): 106-112. [4] 崔肖建. 关于高铁售票系统采用智能推荐算法的研究 [J]. 电脑编程技巧与维护, 2024, (01): 126-129. [5] 曾雪琦. 人工智能与新媒体传播关系研究 [J]. 采写编, 2024, (01): 101-103. [6] 刘泓霆,路瑶. 基于数字经济的电商平台个性化智能推荐、产品涉入度与消费者购买决策 [J]. 商业经济研究, 2024, (01): 131-134. [7] 张娜娜. 基于机器学习的智能推荐系统设计与优化研究 [J]. 家电维修, 2024, (01): 37-39. [8] Yin Z . Research on intelligent recommendation algorithm of literature based on knowledge graph technology [J]. Applied Mathematics and Nonlinear Sciences, 2024, 9 (1): [9] Xing L . Secure Official Document Management and intelligent Information Retrieval System based on recommendation algorithm [J]. International Journal of Intelligent Networks, 2024, 5 110-119. [10] 李韵,雷飞,刘青等. 基于智能推荐模型的人力资源配置研究 [J]. 网络安全与数据治理, 2023, 42 (S2): 48-53. [11] 秦楠,郑競力,吴驰等. 高校资讯智能推荐系统的架构设计与关键策略研究 [J]. 现代教育技术, 2023, 33 (12): 100-110. [12] 刘金焕. 空气炸锅智能推荐功能的实现 [J]. 科技资讯, 2023, 21 (23): 49-51. [13] 邓盼盼,李军莲,陈颖等. 基于知识组织的诊疗资源融合与发现平台设计及实现 [J]. 医学信息学杂志, 2023, 44 (11): 71-77. [14] 王卓,汪映隆. 基于改进决策树算法的人力资源智能推荐方法研究 [J]. 中国新技术新产品, 2023, (22): 133-135. [15] 刘震,赵嵩,杨涛等. 基于深度学习的施工安全隐患整改智能推荐系统 [J]. 大数据, 2023, 9 (06): 124-136. [16] 晁孟华,李金熔. 基于递推算法的绿色包装智能推荐系统研究 [J]. 绿色包装, 2023, (11): 25-30. [17] 夏丽云,徐敏赟,丁懿楠等. 智能推荐算法下的科技期刊国际传播策略研究——以中国科技期刊卓越行动计划入选期刊为例 [J]. 中国科技期刊研究, 2023, 34 (11): 1486-1493. [18] 梁晶晶,郭改琴,任朝辉. 基于智能推荐的个性化教学系统设计 [J]. 自动化与仪器仪表, 2023, (10): 126-130. [19] 陈思成. 基于计算机智能推荐技术的创业信息系统案例分析 [J]. 电子技术, 2023, 52 (10): 388-389. | |||||
指导教师意见: 签名: 2023年12月12日 | 是否可以进入设计(论文)研究: 教研室主任签名: 2023年12月15 日 |