- 博客(15)
- 收藏
- 关注
原创 一文带你理解什么是大模型微调?
常见的 PEFT 方法包括 Prefix-tuning(在模型的输入或隐层添加额外可训练的前缀)、Adapter-tuning(在预训练模型的每一层插入较小的神经网络层或模块)、LoRA(通过学习小参数的低秩矩阵来近似模型权重矩阵的参数更新)等。:用特定的数据对大模型进行训练,调整模型的全部参数,使模型在特定任务上的性能达到最优。从字面意思理解,是在通用大模型的基础上,针对超出其范围或不擅长的特定领域或任务,使用专门的数据集或方法对模型进行相应的调整和优化,以提升其在该特定领域或任务中的适用性和性能表现。
2024-11-07 19:54:40
451
原创 大模型入门到精通!大模型应用开发极简入门(含PDF)
大模型的出现正悄然改变人们的生活与工作方式,比如ChatGPT-4、文心一言、通义千问等语言大模型。它们已帮助很多办公室“白领”们在解决日常工作问题,如制定计划、撰写实施方案,甚至制作美化PPT等(笔者及身边的同事在工作中还经常组合应用)。适合人群:非常适合从其他行业想入门大模型领域的从业者作为入门书籍,这本书对于很多概念做了很通俗易懂的说明和讲解!免费领取。
2024-10-16 19:21:29
761
原创 大模型学习路线(非常详细)从零基础入门到精通!
随着人工智能技术的飞速发展,大模型以其强大的功能和广泛的应用场景,成为了技术领域的热门话题。对于有志于投身人工智能领域的学者和从业者来说,掌握大模型技术至关重要。以下是一份从入门到精通的大模型学习路线指南,帮助您系统性地学习和掌握这一技术。
2024-10-16 10:45:57
358
原创 大模型、大语言模型、大型语言模型的区别和关系
大模型”、“大语言模型”和“大型语言模型”这些术语在很多情况下可以互换使用,但它们在具体语境中可能会有细微的差别。
2024-07-25 20:47:40
3489
原创 大模型入门:RLHF中的PPO算法理解
2)在准备好SFT模型和Reward模型后,一般来说是以SFT模型初始话Actor(策略模型),Ref(用于约束策略模型的参数变化量),Critic(价值模型),Reward(对策略的执行反馈即时的奖励)4个模型,Ref和Reward代表着环境对Actor的奖励或约束,参数是不会更新的,而Actor和Critic是会迭代优化的。如上面的例子中,在状态。蒙特卡洛因为采样了完整的序列,能更精准的估计奖励值,可以认为是无偏的估计,但因为序列越长,序列之间的差异越大,会产生较大的方差,导致收敛很慢;
2024-07-24 19:21:28
1356
原创 大模型 | 你知道的 PyTorch常见函数和类有哪些?
PyTorch 是一个流行的开源机器学习库,特别在深度学习领域中得到了广泛的应用。大模型通常指的是参数量很大的神经网络模型,而 PyTorch 提供了丰富的函数和类来构建和训练这些模型。
2024-07-24 19:17:33
993
原创 AI大模型基础:Agent、RAG、LangChain的关系
Agent、Retrieval-Augmented Generation (RAG) 和 LangChain 是自然语言处理(NLP)和人工智能领域中的几个概念和技术,它们在处理和理解语言数据方面各有作用。
2024-07-24 19:13:50
929
原创 大模型入门:RLHF微调大模型
3.3)计算actor的loss,其实在这里有一个目标actor和当前actor的概念,下面函数中old_logprobs是由目标actor输出的,logprobs是由当前actor输出的,ppo算法中actor的loss是使用当前actor输出的概率和目标actor输出的概率的比值来约束的,转换成log后就是logprobs - old_logprobs。文件夹下,在第三步我们需要两个模型,一个是第一步训练好的SFT模型,另一个是第二步训练好的reward模型。
2024-07-23 09:42:09
1285
原创 大模型入门:基于peft微调ChatGLM模型
经过中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术,ChatGLM因为是中文大模型,在中文任务的表现要优于LLaMa,我在一些实体抽取的任务中微调ChatGLM-6B,都取得了很不错的效果。值得注意的是,在使用deepspeed训练时,在加载chatglm模型时需要注意,chatglm模型加载默认是使用pytorch中的skip_init初始化,会将参数先加载到meta device上,这种情况就无法使用deepspeed。,可以通过transformers中的Autoxxx类加载。
2024-07-23 09:37:40
630
原创 大模型入门: 基于peft 微调 LLaMa模型
在这里使用的是hugging face的accelerate库中的deepspeed方法,zero-3会将模型、梯度、优化器参数都分割到不同的GPU,并且使用cpu offload将一些中间变量放到cpu上,经实测使用两张GPU时,每张GPU的使用大概5个G多一点,单张卡的batch size可以设置到8,但是在实际训练过程中速度比DDP还要慢一点,这里的原因还是因为模型并行、CPU offload等带来了大量的通信工作,所以单张gpu能存放一整个模型时还是首推DDP。同时混合精度训练也会有所加速。
2024-07-23 09:30:18
823
原创 大模型入门:大模型的训练方法
随着现在的模型越来越大,训练数据越来越多时,单卡训练要么太慢,要么无法存下整个模型,导致无法训练。当你拥有多张GPU(单机多卡,多机多卡)时,你就可以通过一些并行训练的方式来解决你的问题。
2024-07-22 19:22:12
762
原创 大模型入门:PEFT
PEFT(Parameter-Efficient Fine-Tuning)是hugging face开源的一个参数高效微调大模型的工具,里面集成了4中微调大模型的方法,可以通过微调少量参数就达到接近微调全量参数的效果,使得在GPU资源不足的情况下也可以微调大模型。
2024-07-22 19:15:41
606
原创 【AI绘画】什么是Stable Diffusion?保姆级 Stable Diffusion 入门教程
Stable Diffusion是一种基于深度学习的文本到图像生成模型,它能够根据用户提供的文本描述生成相应的高质量图像。支持多种任务如图像修复、绘制、文本到图像等。
2024-07-10 17:26:00
1905
原创 【AIGC】AI绘画的发展历程和前景,如何学习AI绘画?
AI绘画的发展经历了从早期的探索尝试到利用计算机技术和机器学习算法进行图像生成的过程。随着技术的不断进步,AI绘画的生成质量和速度也在在不断提升。
2024-07-10 14:05:59
2978
原创 AI绘画工具有哪些你知道吗?推荐14款AI绘画软件
AI绘画,也称为人工智能绘画或机器生成艺术,是指使用人工智能算法来创作视觉艺术作品的过程。AI绘画软件是实现这一过程的工具,它们通常利用深度学习技术,分析大量的艺术作品来学习艺术风格和构图,来生成新的图像或模仿特定艺术家的风格。
2024-07-08 16:18:39
7156
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人