
一文带你理解什么是大模型微调?
常见的 PEFT 方法包括 Prefix-tuning(在模型的输入或隐层添加额外可训练的前缀)、Adapter-tuning(在预训练模型的每一层插入较小的神经网络层或模块)、LoRA(通过学习小参数的低秩矩阵来近似模型权重矩阵的参数更新)等。:用特定的数据对大模型进行训练,调整模型的全部参数,使模型在特定任务上的性能达到最优。从字面意思理解,是在通用大模型的基础上,针对超出其范围或不擅长的特定领域或任务,使用专门的数据集或方法对模型进行相应的调整和优化,以提升其在该特定领域或任务中的适用性和性能表现。

















