cLR-GAN(Conditional Latent Regressor GAN)
在 cVAE-GAN
中,对真实图像B进行编码,以提供潜在矢量的真实样本并从中进行采样。但是, cLR-GAN
的处理方式有所不同,其首先使用生成器从随机噪声中生成伪图像 B ^ \hat B B^ ,然后对伪图像 B ^ \hat B B^ 进行编码,最后计算其与输入随机噪声差异。
前向计算步骤如下:
-
首先,类似于
cGAN
,随机产生一些噪声,然后串联图像A以生成伪图像 B ^ \hat B B^。 -
之后,使用来自
VAE-GAN
的同一编码器将伪图像 B ^ \hat B B^ 编码为潜矢量。 -
最后,从编码的潜矢量中采样 z ^ \hat z z^ ,并用输入噪声 z z z 计算损失。
数据流为 z − > B ^ − > z ^ z-> \hat B -> \hat z z−>B−>z ( 图(d)
中的实线箭头),有两个损失:
-
L G A N \mathcal L_{GAN} LGAN:对抗损失
-
L 1 l a t e n t \mathcal L_1^{latent} L1latent:噪声
N(z)
与潜在编码之间的 L 1 L_1 L1 损失
通过组合这两个数据流,在输出和潜在空间之间得到了一个双映射循环。 BicycleGAN
中的 bi
来自双映射(双向单射),这是一个数学术语,简单来说其表示一对一映射,并且是可逆的。在这种情况下,BicycleGAN
将输出映射到潜在空间,并且类似地从潜在空间映射到输出。总损失如下:
l o s s B i c y c l e = L G A N V A E + L G A N + λ L 1 V A E + λ l a t e n t L 1 l a t e n t + λ K L loss_{Bicycle}=\mathcal L_{GAN}^{VAE}+\mathcal L_{GAN}+λ\mathcal L_1^{VAE}+λ_{latent}\mathcal L_1^{latent}+λ_{KL} lossBicycle=LGANVAE+LGAN+λL1VAE+λlatentL1latent+λKL
在默认配置中, λ = 10 λ = 10 λ=10、 λ l a t e n t = 0.5 λ_{latent} = 0.5 λlatent=0.5、 λ l a t e n t = 0.01 λ_{latent} = 0.01 λlatent=0.01。
BicycleGAN
中有三种类型的网络——生成器,鉴别器和编码器。为 cVAE-GAN
和 cLR-GAN
使用单独的鉴别器可以提高图像质量,因此我们将使用四个网络-生成器,编码器和两个鉴别器。
在生成器中插入潜在编码
将潜在编码插入到生成器中有两种方法,如下图所示:
-
与输入图像进行级联;
-
将其插入到生成器的下采样路径中的其他层中。
实验发现前者效果很好。
有多种方法可以将不同形状的输入和条件结合起来。 BicycleGAN
使用的方法是多次重复潜在编码然后与输入图像连接。
在 BicycleGAN
中,潜在编码长度为8,我们从噪声分布中提取了8个样本,每个样本重复H×W次以形成形状为 (H, W, 8)
的张量。换句话说,在8个通道中,其 (H,W)
特征图都是相同的。以下代码显示了潜在编码的拼接和连接:
input_image = layers.Input(shape=image_shape, name=‘input_image’)
input_z = layers.Input(shape=(self.z_dim,), name=‘z’)
z = layers.Reshape((1,1, self.z_dim))(input_z)
z_tiles = tf.tile(z, [self.batch_size, self.input_shape[0], self.input_shape[1], self.z_dim])
x = layers.Concatenate()([input_image, z_tiles])
下一步是创建两个模型,即 cVAE-GAN
和 cLR-GAN
,以合并网络并创建前向信息流。
cVAE-GAN
下面创建 cVAE-GAN
模型的代码,前向计算的实现:
images_A_1 = layers.Input(shape=input_shape, name=‘ImageA_1’)
images_B_1 = layers.Input(shape=input_shape, name=‘ImageB_1’)
z_encode, self.mean_encode, self.logvar_encode = self.encoder(images_B_1)
fake_B_encode = self.generator([images_A_1, z_encode])
encode_fake = self.discriminator_1(fake_B_encode)
encode_real = self.discriminator_1(images_B_1)
kl_loss = - 0.5 * tf.reduce_sum(1 + self.logvar_encode - tf.square(self.mean_encode) - tf.exp(self.logvar_encode))
self.cvae_gan = Model(inputs=[images_A_1, images_B_1], outputs=[encode_real, encode_fake, fake_B_encode, kl_loss])
我们在模型中使用了 K L KL KL 散度损失。由于可以直接根据均值和对数方差来计算 kl_loss
,而无需在训练步骤中传入外部标签,因此更加简单有效。
cLR-GAN
下面是 cLR-GAN
的实现,前向计算的实现:
images_A_2 = layers.Input(shape=input_shape, name=‘ImageA_2’)
images_B_2 = layers.Input(shape=input_shape, name=‘ImageB_2’)
z_random = layers.Input(shape=(self.z_dim,), name=‘z’)
fake_B_random = self.generator([images_A_2, z_random])
_, mean_random, _ = self.encoder(fake_B_random)
random_fake = self.discriminator_2(fake_B_random)
random_real = self.discriminator_2(images_B_2)
self.clr_gan = Model(inputs=[images_A_2, images_B_2, z_random],
outputs=[random_real, random_fake, mean_random])
现在,我们现在已经定义了模型,下一步是实现训练步骤。
训练步骤
两种模型一起进行训练,但是具有不同的图像对。因此,在每个训练步骤中,我们两次获取数据,每个模型一次,这是通过创建数据管道来完成的,该数据管道将调用两次以加载数据:
images_A_1, images_B_1 = next(data_generator)
images_A_2, images_B_2 = next(data_generator)
self.train_step(images_A_1, images_B_1, images_A_2, images_B_2)
我们可以使用两种不同的方法来执行训练。一种是使用优化器和损失函数定义和编译Keras模型,然后调用 train_on_batch()
来执行训练步骤,这种方法在定义明确的模型上效果很好。此外,我们也可以使用 tf.GradientTape
来更好地控制梯度更新。BicycleGAN
有两个模型,它们共享一个生成器和一个编码器,但是我们需要使用损失函数的不同组合来更新它们的参数,这使 train_on_batch
方法在不修改原始设置的情况下不可行。因此,我们使用 tf.GradientTape
将这两个模型的生成器和鉴别器组合为一个训练步骤,如下所示:
- 第一步是执行前向传递并收集两个模型的输出:
def train_step(self, images_A_1, images_B_1, images_A_2, images_B_2):
z = tf.random.normal((self.batch_size, self.z_dim))
real_labels = tf.ones((self.batch_size, self.patch_size, self.patch_size, 1))
fake_labels = tf.zeros((self.batch_size, self.patch_size, self.patch_size, 1))
with tf.GradientTape() as tape_e, tf.GradientTape() as tape_g, tf.GradientTape() as tape_d1, tf.GradientTape() as tape_d2:
encode_real, encode_fake, fake_B_encode, kl_loss = self.cvae_gan([images_A_1, images_B_1])
random_real, random_fake, mean_random = self.clr_gan([images_A_2, images_B_2, z])
- 接下来,我们通过反向梯度传播更新鉴别器:
discriminator loss
self.d1_loss = self.mse(real_labels, encode_real) + self.mse(fake_labels, encode_fake)
gradients_d1 = tape_d1.gradient(self.d1_loss, self.discriminator_1.trainable_variables)
self.optimizer_d1.apply_gradients(zip(gradients_d1, self.discriminator_1.trainable_variables))
self.d2_loss = self.mse(real_labels, random_real) + self.mse(fake_labels, random_fake)
gradients_d2 = tape_d2.gradient(self.d2_loss,self.discriminator_2.trainable_variables)
self.optimizer_d2.apply_gradients(zip(gradients_d2, self.discriminator_2.trainable_variables))
- 然后,我们根据模型的输出计算损失。与
CycleGAN
相似,BicycleGAN
也使用LSGAN
损失函数,即均方误差:
self.LAMBDA_IMAGE = 10
self.LAMBDA_LATENT = 0.5
self.LAMBDA_KL = 0.01
Generator and Encoder loss
self.gan_1_loss = self.mse(real_labels, encode_fake)
self.gan_2_loss = self.mse(real_labels, random_fake)
self.image_loss = self.LAMBDA_IMAGE * self.mae(images_B_1, fake_B_encode)
self.kl_loss = self.LAMBDA_KL * kl_loss
self.latent_loss = self.LAMBDA_LATENT * self.mae(z, mean_random)
- 最后,还有生成器和编码器权重的更新。 L 1 L_1 L1潜在编码损失仅用于更新生成器,而不用于更新编码器。由于针对损失同时优化将导致它们隐藏与潜在编码有关的信息,而不学习潜在编码中有意义的模式。因此,需要为生成器和编码器分别计算损失,并相应地更新权重:
encoder_loss = self.gan_1_loss + self.gan_2_loss + self.image_loss + self.kl_loss