蜂信物联FastBee平台https://gitee.com/beecue/fastbee
阿里资料开源项目https://gitee.com/vip204888
百度低代码前端框架https://gitee.com/baidu/amis
OpenHarmony开源项目https://gitcode.com/openharmony
仓颉编程语言开放项目https://gitcode.com/Cangjie
1.3.2 采用分布式数据库架构
分布式数据库架构适合大数据量、负载高的情况,它有良好的拓展性和高可用性。通过在多台服务器之间分布数
据,可以实现在多台服务器之间的负载均衡,提高访问效率。
2. Mysql中查询缓存优化
2.1概述
开启Mysql的查询缓存,当执行完全相同的SQL语句的时候,服务器就会直接从缓存中读取结果,当数据被修改,
之前的缓存会失效,修改比较频繁的表不适合做查询缓存。
2.2 操作流程
-
客户端发送一条查询给服务器;
-
服务器先会检查查询缓存,如果命中了缓存,则立即返回存储在缓存中的结果。否则进入下一阶段;
-
服务器端进行SQL解析、预处理,再由优化器生成对应的执行计划;
-
MySQL根据优化器生成的执行计划,调用存储引擎的API来执行查询;
-
将结果返回给客户端。
2.3 查询缓存配置
查看当前的MySQL数据库是否支持查询缓存:
SHOW VARIABLES LIKE ‘have_query_cache’;
查看当前MySQL是否开启了查询缓存 :
SHOW VARIABLES LIKE ‘query_cache_type’.
查看查询缓存的占用大小 :
SHOW VARIABLES LIKE ‘query_cache_size’;
查看查询缓存的状态变量:
SHOW STATUS LIKE ‘Qcache%’;
2.4开启查询缓存
MySQL的查询缓存默认是关闭的,需要手动配置参数 query_cache_type , 来开启查询缓存。query_cache_type
该参数的可取值有三个 :
2.5查询缓存SELECT选项
可以在SELECT语句中指定两个与查询缓存相关的选项 :
SQL_CACHE : 如果查询结果是可缓存的,并且 query_cache_type 系统变量的值为ON或 DEMAND ,则缓存查询结果 。
SQL_NO_CACHE : 服务器不使用查询缓存。它既不检查查询缓存,也不检查结果是否已缓存,也不缓存查询结果。
SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;
2.6查询缓存失效的情况
1) SQL 语句不一致的情况, 要想命中查询缓存,查询的SQL语句必须一致。(包括大小写)
SQL1 : select count(*) from tb_item;
SQL2 : Select count(*) from tb_item;
2)当查询语句中有一些不确定的时,则不会缓存。如 : now() , current_date() , curdate() , curtime() , rand() ,
uuid() , user() , database() 。
SQL1 : select * from tb_item where updatetime < now() limit 1;
SQL2 : select user();
SQL3 : select database();
3)不使用任何表查询语句
select ‘A’;
4)查询 mysql, information_schema或 performance_schema 数据库中的表时,不会走查询缓存。
select * from information_schema.engines;
5)在存储的函数,触发器或事件的主体内执行的查询。
6)如果表更改,则使用该表的所有高速缓存查询都将变为无效并从高速缓存中删除。这包括使用 MERGE 映射到
已更改表的表的查询。一个表可以被许多类型的语句,如被改变 INSERT, UPDATE, DELETE, TRUNCATE
TABLE, ALTER TABLE, DROP TABLE,或 DROP DATABASE 。
3.Mysql内存管理及优化
3.1 内存优化原则
1) 将尽量多的内存分配给MySQL做缓存,但要给操作系统和其他程序预留足够内存。
2) MyISAM 存储引擎的数据文件读取依赖于操作系统自身的IO缓存,因此,如果有MyISAM表,就要预留更多的
内存给操作系统做IO缓存。
3) 排序区、连接区等缓存是分配给每个数据库会话(session)专用的,其默认值的设置要根据最大连接数合理
分配,如果设置太大,不但浪费资源,而且在并发连接较高时会导致物理内存耗尽。
3.2MyISAM 内存优化
myisam存储引擎使用 key_buffer 缓存索引块,加速myisam索引的读写速度。对于myisam表的数据块,mysql没有特别的缓存机制,完全依赖于操作系统的IO缓存。
key_buffer_size
key_buffer_size决定MyISAM索引块缓存区的大小,直接影响到MyISAM表的存取效率。可以在MySQL参数文件中
设置key_buffer_size的值,对于一般MyISAM数据库,建议至少将1/4可用内存分配给key_buffer_size。
在/usr/my.cnf 中做如下配置:
**key_buffer_size=512M
**
read_buffer_size
如果需要经常顺序扫描myisam表,可以通过增大read_buffer_size的值来改善性能。但需要注意的是
read_buffer_size是每个session独占的,如果默认值设置太大,就会造成内存浪费。
read_rnd_buffer_size
对于需要做排序的myisam表的查询,如带有order by子句的sql,适当增加 read_rnd_buffer_size 的值,可以改善
此类的sql性能。但需要注意的是 read_rnd_buffer_size 是每个session独占的,如果默认值设置太大,就会造成内
存浪费。
3.3 InnoDB 内存优化
innodb用一块内存区做IO缓存池,该缓存池不仅用来缓存innodb的索引块,而且也用来缓存innodb的数据块。
innodb_buffer_pool_size
该变量决定了 innodb 存储引擎表数据和索引数据的最大缓存区大小。在保证操作系统及其他程序有足够内存可用
的情况下,innodb_buffer_pool_size 的值越大,缓存命中率越高,访问InnoDB表需要的磁盘I/O 就越少,性能也
就越高。
innodb_buffer_pool_size=512M
innodb_log_buffer_size
决定了innodb重做日志缓存的大小,对于可能产生大量更新记录的大事务,增加innodb_log_buffer_size的大小,
可以避免innodb在事务提交前就执行不必要的日志写入磁盘操作。
4.Mysql并发参数调整
从实现上来说,MySQL Server 是多线程结构,包括后台线程和客户服务线程。多线程可以有效利用服务器资源,
提高数据库的并发性能。在Mysql中,控制并发连接和线程的主要参数包括 max_connections、back_log、
thread_cache_size、table_open_cahce。
4.1 max_connections
采用max_connections 控制允许连接到MySQL数据库的最大数量,默认值是 151。如果状态变量
connection_errors_max_connections 不为零,并且一直增长,则说明不断有连接请求因数据库连接数已达到允
许最大值而失败,这是可以考虑增大max_connections 的值。
4.2 back_log
back_log 参数控制MySQL监听TCP端口时设置的积压请求栈大小。如果MySql的连接数达到max_connections时,
新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即back_log,如果等待连接的数量超过
back_log,将不被授予连接资源,将会报错。5.6.6 版本之前默认值为 50 , 之后的版本默认为 50 +(max_connections / 5), 但最大不超过900。
4.3 table_open_cache
该参数用来控制所有SQL语句执行线程可打开表缓存的数量, 而在执行SQL语句时,每一个SQL执行线程至少要打
开 1 个表缓存。该参数的值应该根据设置的最大连接数 max_connections 以及每个连接执行关联查询中涉及的表
的最大数量来设定 :
max_connections x N ;
4.4 thread_cache_size
为了加快连接数据库的速度,MySQL 会缓存一定数量的客户服务线程以备重用,通过参数 thread_cache_size 可
控制 MySQL 缓存客户服务线程的数量。
4.5 innodb_lock_wait_timeout
该参数是用来设置InnoDB 事务等待行锁的时间,默认值是50ms , 可以根据需要进行动态设置。对于需要快速反
馈的业务系统来说,可以将行锁的等待时间调小,以避免事务长时间挂起; 对于后台运行的批量处理程序来说,
可以将行锁的等待时间调大, 以避免发生大的回滚操作。
5.Mysql锁问题
5.1 锁概述
锁是计算机协调多个进程或线程并发访问某一资源的机制(避免争抢)。在数据库中,除传统的计算资源(如 CPU、RAM、I/O 等)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。
5.2 锁分类
从对数据操作的粒度分 :
1) 表锁:操作时,会锁定整个表。
2) 行锁:操作时,会锁定当前操作行。
从对数据操作的类型分:
1) 读锁(共享锁):针对同一份数据,多个读操作可以同时进行而不会互相影响。
2) 写锁(排它锁):当前操作没有完成之前,它会阻断其他写锁和读锁。
5.3 Mysql 锁
相对其他数据库而言,MySQL的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。下表中罗
列出了各存储引擎对锁的支持情况:
MySQL这3种锁的特性可大致归纳如下 :
仅从锁的角度来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web 应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并查询的应用,如一些在线事务处理(OLTP)系统。
独家面经总结,超级精彩
本人面试腾讯,阿里,百度等企业总结下来的面试经历,都是真实的,分享给大家!
Java面试准备
准确的说这里又分为两部分:
- Java刷题
- 算法刷题
Java刷题:此份文档详细记录了千道面试题与详解;
合于有大量按索引条件并发更新少量不同数据,同时又有并查询的应用,如一些在线事务处理(OLTP)系统。
独家面经总结,超级精彩
本人面试腾讯,阿里,百度等企业总结下来的面试经历,都是真实的,分享给大家!
[外链图片转存中…(img-X4JBdPY3-1725204775948)]
[外链图片转存中…(img-I6lq5O4c-1725204775949)]
[外链图片转存中…(img-ceoWCDIP-1725204775949)]
[外链图片转存中…(img-muXYmwLL-1725204775950)]
Java面试准备
准确的说这里又分为两部分:
- Java刷题
- 算法刷题
Java刷题:此份文档详细记录了千道面试题与详解;
[外链图片转存中…(img-7Psyn80H-1725204775950)]
[外链图片转存中…(img-6k2iLFrr-1725204775951)]