二、AnimeGANv2 照片动漫化
2.1、与 AnimeGAN 的对比
AnimeGANv2 是照片漫画工具 AnimeGAN 的升级版本,AnimeGANv2 在训练 AI 时 GAN 包括了两套独立的网络 A 和 B,A 网络是需要训练的分类器,用来分辨成图是否符合标准;B 网络是生成器,生成类似于真实样本的随机样本,并将其作为假样本以欺骗网络 A。在 A 和 B 的对抗中,AI 的水平逐渐提升,最后实现质的飞跃,相较于之前版本,AnimeGANv2 主要在以下四个方面进行优化:
- 解决生成图片的高频伪影问题。
- 易于训练,达到实物纸张效果。
- 减少生成器网络参数。
- 尽可能用高质量的图片样式数据。
2.2、AnimeGANv2 效果及项目介绍
AnimeGANv2 可以将现实场景的图片处理为动漫画风,目前支持宫崎骏、新海诚和今敏的三种风格,三者实现效果具体如下图所示:
Github 地址:https://github.com/TachibanaYoshino/AnimeGANv2,详情具体如下图所示:
三、本次案例部署及实验平台介绍
3.1、对象存储服务 OBS
我们将本次案例中的相关代码和数据存放于华为云提供的对象存储服务 OBS 中,推荐大家使用:https://www.huaweicloud.com/product/obs.html,产品详细信息具体如下图所示:
对象存储服务(Object Storage Service,OBS)提供海量、安全、高可靠、低成本的数据存储能力,可供用户存储任意类型和大小的数据。适合企业备份/归档、视频点播、视频监控等多种数据存储场景,在我本人的使用以及测试中对象存储服务 OBS 效果颇好,故推荐给大家使用,具体如下图所示:
3.2、AI 开发平台 ModelArts
本次案例运行的实验平台为华为云的 AI 开发平台 ModelArts,详细信息请点击:https://support.huaweicloud.com/modelarts/index.html,产品详细信息具体如下图所示:
ModelArts 是面向开发者的一站式 AI 开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式 Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期 AI 工作流,在我本人的使用以及测试中 ModelArts 效果颇好且提供了可以满足不同开发需求的运行环境(部分免费),故推荐给大家使用,具体如下图所示:
可以在华为云 AI 开发平台 ModelArts 提供的 JupyterLab 中选择不同的实验环境内核,具体如下图所示:
四、获取代码和数据
获取代码和数据,相关实现命令如下所示:
import os
!wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/clf/code/AnimeGAN/AnimeGAN.zip