AI实践营 Part 03:阿里云天池-二手车交易价格预测

目录

引言

一、项目背景

二、数据读取与预处理

三、特征工程

 1. One-Hot编码

2. 归一化处理

四、模型构建与训练

1. 定义网络结构

2. 实例化模型与定义损失函数

3. 数据准备

4. 训练模型

5. 模型评估与预测


引言

在当今数字化时代,数据挖掘已成为从海量数据中提取有价值信息和知识的关键技术。通过综合运用统计学、机器学习和数据库技术,数据挖掘技术帮助我们揭示数据中的隐藏模式、关系和趋势,为决策提供有力支持。本文将详细介绍阿里云天池平台上的二手车交易价格预测项目,探讨数据挖掘在实际应用中的具体过程和关键技术。

一、项目背景

二手车交易价格预测是数据挖掘在实际应用中的一个典型场景。通过对二手车数据的深入分析,我们可以建立预测模型,对二手车价格进行合理估计,帮助买家和卖家更好地了解市场行情,提高交易效率。阿里云天池平台上的二手车交易价格预测项目,正是基于这样的需求而设计的。

二、数据读取与预处理

1. 数据读取

首先,我们需要从指定路径读取训练集和测试集数据。这里使用Python的pandas库来实现:
 

import pandas as pd

train_data = pd.read_csv('/gemini/data-1/used_car_train_20200313.csv', sep=' ')
test_data = pd.read_csv('/gemini/data-1/used_car_testB_20200421.csv', sep=' ')

2. 数据合并与清洗

为了方便统一处理,我们将训练集和测试集合并:
 

data = pd.concat([train_data, test_data])

接下来,进行数据清洗工作。对于数据中的特殊符号(如'-'),我们将其替换为明确的数值(如'-1'),以便进行后续处理:
 

data = data.replace('-', '-1')

对于power值大于600的,我们进行限制处理:
 

data.loc[data['power'] > 600, 'power'] = 600

对于离散特征中存在的缺失值,我们也使用'-1'进行填充:
 

for col in config['cate_cols']:
    data[col] = data[col].fillna('-1')

此外,我们还需要去除可能无关的列,如'name'和'regionCode':
 

data.drop(['name', 'regionCode'], axis=1, inplace=True)

三、特征工程

 1. One-Hot编码

对于离散特征,我们使用One-Hot编码进行转换。One-Hot编码是一种将分类变量转换为数字向量的编码方式,可以处理非数值型的分类数据,将其转化为模型可以处理的数值形式。

def oneHotEncode(df,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值