目录
引言
在当今数字化时代,数据挖掘已成为从海量数据中提取有价值信息和知识的关键技术。通过综合运用统计学、机器学习和数据库技术,数据挖掘技术帮助我们揭示数据中的隐藏模式、关系和趋势,为决策提供有力支持。本文将详细介绍阿里云天池平台上的二手车交易价格预测项目,探讨数据挖掘在实际应用中的具体过程和关键技术。
一、项目背景
二手车交易价格预测是数据挖掘在实际应用中的一个典型场景。通过对二手车数据的深入分析,我们可以建立预测模型,对二手车价格进行合理估计,帮助买家和卖家更好地了解市场行情,提高交易效率。阿里云天池平台上的二手车交易价格预测项目,正是基于这样的需求而设计的。
二、数据读取与预处理
1. 数据读取
首先,我们需要从指定路径读取训练集和测试集数据。这里使用Python的pandas库来实现:
import pandas as pd
train_data = pd.read_csv('/gemini/data-1/used_car_train_20200313.csv', sep=' ')
test_data = pd.read_csv('/gemini/data-1/used_car_testB_20200421.csv', sep=' ')
2. 数据合并与清洗
为了方便统一处理,我们将训练集和测试集合并:
data = pd.concat([train_data, test_data])
接下来,进行数据清洗工作。对于数据中的特殊符号(如'-'),我们将其替换为明确的数值(如'-1'),以便进行后续处理:
data = data.replace('-', '-1')
对于power值大于600的,我们进行限制处理:
data.loc[data['power'] > 600, 'power'] = 600
对于离散特征中存在的缺失值,我们也使用'-1'进行填充:
for col in config['cate_cols']:
data[col] = data[col].fillna('-1')
此外,我们还需要去除可能无关的列,如'name'和'regionCode':
data.drop(['name', 'regionCode'], axis=1, inplace=True)
三、特征工程
1. One-Hot编码
对于离散特征,我们使用One-Hot编码进行转换。One-Hot编码是一种将分类变量转换为数字向量的编码方式,可以处理非数值型的分类数据,将其转化为模型可以处理的数值形式。
def oneHotEncode(df,