题目:FedASA: A Personalized Federated Learning with Adaptive Model Aggregation for Heterogeneous Mobile Edge Computing
摘要:联邦学习(FL)作为一种新兴技术,为工业物联网(IoT)中的机器学习提供了新的可能性。它能够在保障数据隐私的前提下,实现协同训练。然而,在实际的物联网应用中,联邦学习面临三大主要挑战:统计数据的异质性、资源的限制以及公平性的维护。为应对这些挑战,我们提出了一种名为FedASA的高效且公平的联邦学习方法。FedASA通过自适应选择共享架构,有效解决了资源受限环境中的统计异质性问题。FedASA首先采用一种基于单元的共享架构选择策略,为每个设备自适应地构建最适合的共享架构。接着,我们设计了一个基于单元的聚合算法,以便在异构设备之间有效聚合共享架构。为了确保方法的可靠性,我们进行了联邦误差界的理论分析,从而为算法的公平性提供了坚实的理论支持。此外,FedASA在一阶驻点处的收敛性也得到了证明。通过广泛的仿真和实际实验,我们对FedASA的性能进行了深入评估。结果表明,在跨越不同地理位置的场景中,FedASA在准确性方面比现有的最先进方法提高了最高达13.27%。同时,它在公平性、收敛速度方面表现更优,且通信需求显著降低了81.49%。这些结果表明FedASA在实际应用中的潜在优势,为工业物联网中的联邦学习提供了一种高效、可靠的解决方案。
作者:Dongshang Deng; Xuangou Wu; Tao Zhang; Xiangyun Tang; Hongyang Du; Jiawen Kang; Jiqiang Liu; Dusit Niyato
期刊:IEEE Transactions on Mobile Computing
时间:2024