LeetCode - Easy - 108

Given the sorted array: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

0

/ \

-3 9

/ /

-10 5

Analysis


基本解题思想就是获取数组中位数,再以中位数的下标为界,分成两子数组,递归获取中位数,从而构建一棵BST。

方法一:非递归版,首先获取数组的中位数,然后从root开始DFS,放置合适位置,再以这中位数的下标为界,分成子数组的左右界下标推入栈中,之后形成一循环。

方法二:递归版,方法思想基本与方法一相同。

方法三:别人写的递归版。该方法思想是:首先获取数组的中位数,新建一节点,再以这中位数的下标为界,分为左右子数组,然后节点的左节点则在左子数组中得出,节点的右节点则在右子数组中得出,然后递归获取中位数,从而构建一棵BST。与方法二的区别是,不用从root开始DFS。

方法四:根据方法三思想写的非递归版。

Submission


import java.util.LinkedList;

import com.lun.util.BinaryTree.TreeNode;

public class ConvertSortedArrayToBinarySearchTree {

// 方法一:非递归版

public TreeNode sortedArrayToBST1(int[] nums) {

if (nums == null || nums.length == 0)

return null;

int mid = (int) Math.ceil((nums.length - 1) / 2.0);

TreeNode root = new TreeNode(nums[mid]);

LinkedList<int[]> stack = new LinkedList<>();

stack.push(new int[] { mid + 1, nums.length - 1 });

stack.push(new int[] { 0, mid - 1 });

while (!stack.isEmpty()) {

int[] pair = stack.pop();

int left = pair[0], right = pair[1];

TreeNode p = root;

if (left <= right) {

mid = (int) Math.ceil(left + (right - left) / 2.0);//这样写是为了迎合下面的单元测试用例,普通写法是mid = left + (right - left) / 2

int temp = nums[mid];

while (true) {

if (temp < p.val) {

if (p.left == null) {

p.left = new TreeNode(temp);

break;

} else {

p = p.left;

}

} else if (temp > p.val) {

if (p.right == null) {

p.right = new TreeNode(temp);

break;

} else {

p = p.right;

}

} else {

break;

}

}

stack.push(new int[] { mid + 1, right });

stack.push(new int[] { left, mid - 1 });

}

}

return root;

}

// 方法二:递归版

public TreeNode sortedArrayToBST2(int[] nums) {

if (nums == null || nums.length == 0)

return null;

int mid = (int) Math.ceil((nums.length - 1) / 2.0);

TreeNode root = new TreeNode(nums[mid]);

addNode(nums, root, 0, mid - 1);

addNode(nums, root, mid + 1, nums.length - 1);

return root;

}

private void addNode(int[] nums, TreeNode root, int left, int right) {

if (left > right) {

return;

}

int mid = (int) Math.ceil(left + (right - left) / 2.0);

int temp = nums[mid];

TreeNode p = root;

while (true) {

if (temp < p.val) {

if (p.left == null) {

p.left = new TreeNode(temp);

break;

} else {

p = p.left;

}

} else if (temp > p.val) {

if (p.right == null) {

p.right = new TreeNode(temp);

break;

} else {

p = p.right;

}

} else {

break;

}

}

addNode(nums, root, left, mid - 1);

addNode(nums, root, mid + 1, right);

}

// 方法三:别人写的递归版

public TreeNode sortedArrayToBST3(int[] num) {

if (num.length == 0) {

return null;

}

TreeNode head = addNode(num, 0, num.length - 1);

return head;

}

private TreeNode addNode(int[] num, int low, int high) {

if (low > high) {

return null;

}

int mid = (int) Math.ceil(low + (high - low) / 2.0);

TreeNode node = new TreeNode(num[mid]);

node.left = addNode(num, low, mid - 1);

node.right = addNode(num, mid + 1, high);

return node;

}

// 方法四:根据方法三写成的非递归版

public TreeNode sortedArrayToBST4(int[] nums) {

if (nums == null || nums.length == 0)

return null;

LinkedList stack = new LinkedList<>();

int mid = (int) Math.ceil((nums.length - 1) / 2.0);

TreeNode root = new TreeNode(nums[mid]);

TreeNode p = null;

stack.push(new Object[] { root, 1, mid + 1, nums.length - 1 });

stack.push(new Object[] { root, 0, 0, mid - 1 });

while (!stack.isEmpty()) {

Object[] objs = (Object[]) stack.pop();

TreeNode parent = (TreeNode) objs[0];

int leftOrRight = (int) objs[1];

int low = (int) objs[2];

int high = (int) objs[3];

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值