Given the sorted array: [-10,-3,0,5,9],
One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
0
/ \
-3 9
/ /
-10 5
基本解题思想就是获取数组中位数,再以中位数的下标为界,分成两子数组,递归获取中位数,从而构建一棵BST。
方法一:非递归版,首先获取数组的中位数,然后从root开始DFS,放置合适位置,再以这中位数的下标为界,分成子数组的左右界下标推入栈中,之后形成一循环。
方法二:递归版,方法思想基本与方法一相同。
方法三:别人写的递归版。该方法思想是:首先获取数组的中位数,新建一节点,再以这中位数的下标为界,分为左右子数组,然后节点的左节点则在左子数组中得出,节点的右节点则在右子数组中得出,然后递归获取中位数,从而构建一棵BST。与方法二的区别是,不用从root开始DFS。
方法四:根据方法三思想写的非递归版。
import java.util.LinkedList;
import com.lun.util.BinaryTree.TreeNode;
public class ConvertSortedArrayToBinarySearchTree {
// 方法一:非递归版
public TreeNode sortedArrayToBST1(int[] nums) {
if (nums == null || nums.length == 0)
return null;
int mid = (int) Math.ceil((nums.length - 1) / 2.0);
TreeNode root = new TreeNode(nums[mid]);
LinkedList<int[]> stack = new LinkedList<>();
stack.push(new int[] { mid + 1, nums.length - 1 });
stack.push(new int[] { 0, mid - 1 });
while (!stack.isEmpty()) {
int[] pair = stack.pop();
int left = pair[0], right = pair[1];
TreeNode p = root;
if (left <= right) {
mid = (int) Math.ceil(left + (right - left) / 2.0);//这样写是为了迎合下面的单元测试用例,普通写法是mid = left + (right - left) / 2
int temp = nums[mid];
while (true) {
if (temp < p.val) {
if (p.left == null) {
p.left = new TreeNode(temp);
break;
} else {
p = p.left;
}
} else if (temp > p.val) {
if (p.right == null) {
p.right = new TreeNode(temp);
break;
} else {
p = p.right;
}
} else {
break;
}
}
stack.push(new int[] { mid + 1, right });
stack.push(new int[] { left, mid - 1 });
}
}
return root;
}
// 方法二:递归版
public TreeNode sortedArrayToBST2(int[] nums) {
if (nums == null || nums.length == 0)
return null;
int mid = (int) Math.ceil((nums.length - 1) / 2.0);
TreeNode root = new TreeNode(nums[mid]);
addNode(nums, root, 0, mid - 1);
addNode(nums, root, mid + 1, nums.length - 1);
return root;
}
private void addNode(int[] nums, TreeNode root, int left, int right) {
if (left > right) {
return;
}
int mid = (int) Math.ceil(left + (right - left) / 2.0);
int temp = nums[mid];
TreeNode p = root;
while (true) {
if (temp < p.val) {
if (p.left == null) {
p.left = new TreeNode(temp);
break;
} else {
p = p.left;
}
} else if (temp > p.val) {
if (p.right == null) {
p.right = new TreeNode(temp);
break;
} else {
p = p.right;
}
} else {
break;
}
}
addNode(nums, root, left, mid - 1);
addNode(nums, root, mid + 1, right);
}
// 方法三:别人写的递归版
public TreeNode sortedArrayToBST3(int[] num) {
if (num.length == 0) {
return null;
}
TreeNode head = addNode(num, 0, num.length - 1);
return head;
}
private TreeNode addNode(int[] num, int low, int high) {
if (low > high) {
return null;
}
int mid = (int) Math.ceil(low + (high - low) / 2.0);
TreeNode node = new TreeNode(num[mid]);
node.left = addNode(num, low, mid - 1);
node.right = addNode(num, mid + 1, high);
return node;
}
// 方法四:根据方法三写成的非递归版
public TreeNode sortedArrayToBST4(int[] nums) {
if (nums == null || nums.length == 0)
return null;
LinkedList stack = new LinkedList<>();
int mid = (int) Math.ceil((nums.length - 1) / 2.0);
TreeNode root = new TreeNode(nums[mid]);
TreeNode p = null;
stack.push(new Object[] { root, 1, mid + 1, nums.length - 1 });
stack.push(new Object[] { root, 0, 0, mid - 1 });
while (!stack.isEmpty()) {
Object[] objs = (Object[]) stack.pop();
TreeNode parent = (TreeNode) objs[0];
int leftOrRight = (int) objs[1];
int low = (int) objs[2];
int high = (int) objs[3];