题目描述
小明在学习二进制时,发现了一类不含 101的数,也就是:
将数字用二进制表示,不能出现 101 。
现在给定一个整数区间 [l,r] ,请问这个区间包含了多少个不含 101 的数?
输入描述
输入的唯一一行包含两个正整数 l, r( 1 ≤ l ≤ r ≤ 10^9)。
输出描述
输出的唯一一行包含一个整数,表示在 [l,r] 区间内一共有几个不含 101 的数。
用例
输入 | 1 10 |
输出 | 8 |
说明 | 区间 [1,10] 内, 5 的二进制表示为 101 ,10的二进制表示为 1010 ,因此区间 [ 1 , 10 ] 内有 10−2=8 个不含 101的数。 |
输入 | 10 20 |
输出 | 7 |
说明 | 区间 [10,20] 内,满足条件的数字有 [12,14,15,16,17,18,19] 因此答案为 7。 |
解题思路分析
这道题的目的是在指定的区间 [l,r][l, r][l,r] 内统计多少个二进制表示中不包含“101”子串的数。解题的关键在于以下几点:
-
二进制表示:
- 每个整数在二进制表示时可能包含“101”这个子串。我们的任务是找出区间内所有不包含“101”的数。
-
遍历区间:
- 从 lll 到 rrr 遍历每一个整数,将其转换为二进制字符串。
- 检查该二进制字符串是否包含“101”子串。
-
计数:
- 对于每个不包含“101”的数,计数器加一。
-
优化:
- 对于大范围的输入(例如 l,rl, rl,r 都接近 10910^9109),直接遍历所有整数效率较低,因此可以考虑通过动态规划或其他方式提前计算部分结果,或者在二进制层面上直接避免生成含有“101”的数字。
C++ 代码实现
#include <iostream>
#include <string>
using namespace std;
bool contains101(int num) {
string binary = bitset<32>(num).to_string();
return binary.find("101") != string::npos;
}
int countNumbersWithout101(int l, int r) {
int count = 0;
for (int i = l; i <= r; ++i) {
if (!contains101(i)) {
++count;
}
}
return count;
}
int main() {
int l, r;
cin >> l >> r;
int result = countNumbersWithout101(l, r);
cout << result << endl;
return 0;
}
Python 代码实现
def contains_101(num):
binary = bin(num)[2:] # Convert to binary and remove the '0b' prefix
return '101' in binary
def count_numbers_without_101(l, r):
count = 0
for i in range(l, r + 1):
if not contains_101(i):
count += 1
return count
def main():
l, r = map(int, input().split())
result = count_numbers_without_101(l, r)
print(result)
if __name__ == "__main__":
main()
解题说明
-
二进制转换:使用
bitset
(C++)或bin
(Python)将数字转换为二进制表示。 -
字符串匹配:检查转换后的二进制字符串是否包含“101”子串。如果不包含,则将其计入结果。
-
效率考量:对于较大的区间,可以考虑更优化的算法,例如动态规划,但基本算法适用于较小区间的问题。
-
边界情况:需要考虑 [l,r][l, r][l,r] 范围较大时的处理效率,可能需要优化以避免直接遍历所有数字。