让OpenAI o1成AI天花板的慢思考模式,360已提前两个月落地

卷参数、卷数据集大小、卷算力……大模型在进入到GPT4之后,这种“大力出奇迹”的内卷法似乎不再奏效——消耗能源惊人,换来的模型能力增长却异常缓慢。“漫山遍野的大模型似乎都大差不差……觉得说也就这样了”——这是这段时间很多人对AI透露出的一些悲观态度。
在这里插入图片描述

但是o1打破了这一瓶颈。

9月13日,OpenAI o1-preview发布,凭借“慢思考”开创大模型技术前进的新模式,让通向AGI的道路再次豁然开朗。

图片

01

是慢思考

将通往AGI的计数器重置为1

什么是慢思考?

360集团创始人周鸿祎在其近期发布的短视频中指出,过去GPT类的大模型通过训练大量知识,主要学习的是快思考能力。快思考的特点是——快速直觉、无意识,反应很快但能力不够强,这也是为什么GPT类大模型答案总是脱口而出,但质量却不够稳定,“就像人一样,不假思索就想出口成章而不出错,非常难实现”。

反之,慢思考的特点则是缓慢、有意识、有逻辑性,需要分很多步骤。类似写一篇复杂的文章,要先列提纲,根据提纲去搜集数据,收集素材,根据素材进行讨论,再把文章写出来,还要进行润色和修改。

这一次o1拥有了人类慢思考的特质,在回答问题前会反复地思考,拆解、理解、推理,可能会自己问自己1000遍,然后才能给出最终的答案。

注意这和人类的思考过程非常相似,人类在解决复杂推理问题时,如果也选择先将问题点一个个写下来,再各个击破,也会显著提升答案的准确度。

换句话说,o1通过引入大规模强化学习算法,将模型思维展现为“思维链”(Chain-of-Thought, CoT),告别Prompt工程,从复杂人工环节走向自动化,从而显著提高了模型通用推理能力和对齐效果。

慢思考的威力有多大?

根据OpenAI官方测评,o1不仅在绝大多数推理任务中表现优于GPT-4o,甚至在部分推理密集型基准测试中可与人类专家相媲美——在国际数学奥林匹克(IMO)资格考试中,o1模型解决了83%的问题,远超GPT-4的13%解决率;在OpenAI模拟的Codeforces主办的编程竞赛中,o1模型表现优于 93% 的竞争对手;此外,在物理、化学和生物等学科的基准测试(GPQA)中,o1模型的准确率甚至超越了人类博士水平的准确率。

对于复杂的推理任务来说,慢思考加持后的o1模型取得了重大进步。OpenAI首席执行官山姆·奥特曼表示,在处理难而复杂的任务上,OpenAI o1达到了当下人工智能的最高水平,展现出强大的推理能力。这也是o1名字的来源——一个新的开始,将计数器重置为1。

“跨越式的改变”、“大模型领域的iPhone时刻”……炸圈的o1再次向业界展示了慢思考的威力。只是为什么说“再”呢?因为同一理念早在两个月前,360集团创始人周鸿祎就已经提出且付诸实践。

就在今年7月底的ISC AI大会上,周鸿祎就前瞻性地宣布,将「用基于智能体的框架打造慢思考系统,从而增强大模型的慢思考能力」,并且在近期的多次强调,将「利用智能体框架,让大模型从快思考转成慢思考模式,把多个大模型组合起来解决业务问题」。

而且不仅仅是方向上的类似,OpenAI o1是用“思维链”结构实现的超级智能对吧?老周的360也同样在7月底发布了专家协作架构CoE(Collaboration-of-Experts),它们在分工协作,多步推理的底层逻辑上几乎是一样的,这个360首创的CoE架构,在加快推理速度的同时,还有效降低了API接口和Token的使用成本。

没有止步于技术创新,360比OpenAI更早一步地将慢思考模式付诸实际应用。目前,基于CoE技术架构的AI功能,用户可在360AI浏览器和360AI搜索中体验。

图片

02

是慢思考

感受左右手互博的威力

回到文章开头的问题,漫山遍野的大模型在回答同一个问题的能力上,看似相近,但一旦挖掘细分维度——这个擅长回答,那个擅长反思,另一个擅长总结……能力在细分维度上立马见高下,而此时正在360AI浏览器上使用大模型的你,好比给你配齐了各色能人异士。

换句话说,CoE架构并非只接入了一家企业的模型,而是由360牵头——百度、腾讯、阿里巴巴、智谱AI、Minimax、月之暗面等16家国内主流大模型厂商合作打造的,目前已经接入了这些企业的54款大模型产品,未来预计会全量接入100多款大模型产品。更进一步的是,CoE技术架构不仅接入了“大模型”,还接入了很多十亿甚至更小参数的专家模型,在回答简单问题时调用更精准的“小模型”,可在获得高质量回答的同时还能节约推理资源、提升响应速度。

图片

1、众人拾柴火焰高,「多模型协作」力量大;

在这个功能里,你可以54款大模型中任意选择3款大模型,让其中一个模型扮演专家,为你回答问题;第二个模型作为反思者,会对专家给出的答案进行评估、纠错以及补充;最后,由第三个模型总结汇总两轮回答,给出最终答案。

要知道,当一个人能力有限的时候,唯有团结协作才能实现更大的突破。进行多模型协作,以此将达成比单个大模型回答问题好得多的效果。

值得一提的是,这和OpenAI o1通过多个子模型实现“慢思考”的逻辑是类似的,和人类的思考方式也很像。

甚至于,近期有国内技术团队通过将思维链CoT优化为CoE协同工作模式,使用任意3个模型协同工作,达到了和OpenAI o1-preview类似的反思决策效果。经过21道复杂逻辑推理题测试结果显示,其效果与OpenAI o1-preview相当,完全超越GPT-4o,有时还能超越o1-preview。

这就是“复仇者联盟”的力量,即使“灭霸”的能力再强,团结起来的团队,依旧是强大、可以与之抗衡的。

2、「大模型竞技场」,总有一款模型适合你;

「大模型竞技场」支持调用国内16家主流大模型企业的54个大模型产品进行同台竞技,在响应速度、耗时、效率等多个维度进行量化比拼,帮助用户“在最短的时间获取最佳回答”。

模型竞技场也为国内大模型厂商提供了一个公平的竞技平台,共同塑造“比学赶帮超”的产品进化氛围,为广大AI用户提供优质服务。

3、左右手互博,「360AI搜索」实现答案的“信达雅”;

360AI搜索的“深入回答”模式,会涉及7-15次的大模型调用,比如可能会涉及1次意图识别模型调用,1次搜索词改写模型调用,5次搜索调用,1次网页排序调用,1次生成主回答调用,1次生成追问调用。

**
**

图片

360AI搜索工作链路:
1、首先构建意图分类模型,对用户的问题进行意图识别;
2、接着打造任务路由模型对问题进行拆解,不同的问题可以划分成“简单任务”、“多步任务”和“复杂任务”,对多个模型进行调度;
3、最后构建AI工作流,使多个大模型协同运作。

图片在古诗词翻译任务中,360AI搜索会调用多个模型协同完成任务 图源:360

比如面对一道古诗词中译英题目,路由模块就会调用起翻译、反思等多个模型,实现机器的左右手互博,让这些模型分工配合、在相互精进中共同完成任务。

得益于全球领先的CoE技术架构的支撑,以及和国内多家主流大模型厂商的通力协作,360AI搜索在2024年1月诞生后,仅用8-9个月的时间,就超越了Perplexity AI,成为全球最大的AI原生搜索引擎。

03

写在最后

事实上,当你跟一个真正的高人一起做交流的时候,脱口而出的答案可能不是你需要的,深思熟虑后智者给到的——才是更完整的思考、更丰满的建议,也才更具价值。这意味着“慢思考”系统的出现改变了大模型“大力出奇迹”的游戏规则。

在一潭死水的大模型发展困境中,是创新的“慢思考”让其再现风浪,OpenAI用“思维链”、360用CoE将其一一实现。

与此同时,**在慢思考模式上先行一步的360,让我们有充分的理由相信,**在AI大模型这条赛道上,国内厂商不仅没有被扩大差距,反而是在思想前瞻性、技术产品落地方面,都走在了以 OpenAI 为代表的国际水平前面。

况且,基于我国高素质的工程师人才优势,和新时代创新精神,完全有可能让AI大模型赛道,成为继新能源汽车之后的又一个领跑国际前沿的重要科技创新领域。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值