小猿口算脚本

实现原理:安卓adb截图传到电脑,然后用python裁剪获得两张数字图片,使用ddddocr识别数字,比较大小,再用adb命令模拟安卓手势实现><

import os
import ddddocr
from time import sleep
from PIL import Image
def take_screenshot(path):

    """从设备截取屏幕并保存到指定路径。"""

    os.system(f'adb shell screencap -p > {path}')

    # 读取截取的屏幕截图并替换行结束符

    with open(path, 'rb') as f:
        return f.read().replace(b'\r\n', b'\n')
def process_image(image_path, crop_area):

    """打开图片,裁剪并返回裁剪后的图片。"""

    with Image.open(image_path) as img:

        return img.crop(crop_area)

def extract_text(img):

    """提取图片中的文本。"""
    with open(img, 'rb') as f:
        img_bytes = f.read()

    res = ocr.classification(img_bytes)

    return res.replace(' ', '').replace('\n', '')
def compare_numbers(x, y):
    """比较两个数字并相应地执行滑动操作。"""
    try:

        x_int, y_int = int(x), int(y)


        if x_int > y_int:



            print(f"{x} > {y}")



            os.system("adb shell input swipe 450 1800 850 1900 1")



            os.system("adb shell input swipe 850 1900 450 2000 1")



        else:



            print(f"{x} < {y}")



            os.system("adb shell input swipe 850 1800 450 1900 1")



            os.system("adb shell input swipe 450 1900 850 2000 1")


    except ValueError:


        print("数字格式无效。")

def main():

    """主程序逻辑。"""

    screenshot_path = 'screenshot.png'

    # 截取屏幕并保存


    screenshot = take_screenshot(screenshot_path)


    with open(screenshot_path, 'wb') as f:

        f.write(screenshot)


    # 定义裁剪区域(左,上,右,下)分别是两个数字在图片中的区域坐标


    crop_areas = [


        (330, 720, 530, 880),


        (730, 720, 930, 880)


    ]

    cropped_images = []



    for i, crop_area in enumerate(crop_areas, start=1):



        cropped_image = process_image(screenshot_path, crop_area)



        cropped_image_path = f"screenshot{i}.png"



        cropped_image.save(cropped_image_path)



        cropped_images.append(cropped_image_path)



 



    # 从裁剪后的图片中提取文本



    texts = [extract_text(image) for image in cropped_images]



 



    # 比较提取的数字



    compare_numbers(texts[0], texts[1])



 



 



if __name__ == '__main__':



    ocr = ddddocr.DdddOcr(show_ad=False)



    while True:



        main()



        sleep(0.2)

文章知识点与官方知识档案匹配,可进一步学习相关知识

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~
在这里插入图片描述

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值