技术栈:
以下是一个简单的AI创作小程序的代码示例:
import tensorflow as tf
import tensorflow_hub as hub
# 加载预训练的GPT-2模型
module = hub.load('https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1')
# 输入一个句子,生成下一个单词
def generate_next_word(sentence):
embeddings = module([sentence])
outputs = model(embeddings)
predicted_word = tf.argmax(outputs, axis=-1)
return predicted_word
# 输入一个句子,生成一个完整的句子
def generate_sentence(input_sentence, max_length=10):
sentence = input_sentence
for _ in range(max_length):
next_word = generate_next_word(sentence)
sentence += ' ' + next_word
return sentence
# 使用示例
input_sentence = 'The quick brown'
generated_sentence = generate_sentence(input_sentence)
print(generated_sentence)
前言:
想要自媒体做的好,AI少不了!
当我们想要快速的创作内容,加快创作速度的时候,为什么别人就可以很快地就创作出一篇内容,而自己墨迹半天确出不了一个字呢?这其实是没有运用好工具。
一、AI创作系统
AI创作系统是一款支持ai写作,文生图,图生图,内有多种风格可选择。主要以写作创作为主的系统,能够快速地帮我们创作。
PC端展示:
手机小程序页面展示:
二、系统技术架构
前端:vue3、uni-app。
后端:PHP、thinkphp8等语言开发后端逻辑
数据库:mysql5.7
三、核心功能
- 支持openai,百度文心,M绘画,星火,灵犀等多款接口。
- 全新绘画广场,多模型接口
- 智能问答,AI绘画,ai写作
- 敏感词过滤,达人分销,会员充值,积分系统,卡密兑换。
- 四端兼容:微信小程序,h5,公众号,电脑PC
四、如何搭建AI创作平台
- 明确目标:首先要确定平台的目标和定位
- 技术准备:需要有良好的人工智能算法和模型来进行创作。可以选择使用现有的开源算法和模型,也可以自行开发。
- 数据准备:训练AI模型需要大量的数据来学习和生成创作内容,需要准备一些相关的数据集。
- 模型训练:使用准备好的数据集和所选的算法,进行AI模型的训练。
- 平台开发:根据目标和定位,开发相应的用户界面和功能,包括用户注册、登录、创作界面、创作结果展示等。
- 测试和优化:进行平台的测试,发现问题并进行修复和优化。可以邀请用户进行体验和反馈,对平台进行改进。
- 上线发布:完成测试和优化后,将平台部署到线上,供用户正式使用。
此外,还需要考虑平台的商业模式和盈利方式,例如收费模式、广告模式等。同时,要关注用户体验和用户反馈,不断改进和优化平台,增加用户粘性和用户满意度。
五、上线需要准备什么?
- 营业执照
- 服务器
- 域名
- 认证小程序
总结:
通过以上步骤,你就可以搭建一套自己的AI创作系统啦,不仅能够提升创作效率,优化创作内容,还能体验前所未有的创新创作。