毫无疑问,现在 Python 不仅是软件工程师中发展最快的编程语言,也是数据科学家 、Web 开发人员中发展最快的编程语言。与C++或JavaScript等其他编程语言相比,它是对初学者最友好的编程语言,但要成为一名 Python 高手,你不仅需要掌握 Python 语言,还需要掌握 Python 开发人员必不可少的工具和库。
俗话说,工要行其事,必先利其器,Python 开发人员亦不例外。以下是 Python 开发人员在 2022 年应该学习的工具列表。
1. PyCharm IDE
这是由 JetBrains 创建的 Python 开发工具,这是一个集成开发环境 (IDE) ,可能是有史以来最好的在线开发环境。JetBrains 也为许多编程语言(而不仅仅是 Python)创建开发人员工具和 IDE ,是这方面最知名的科技公司之一。
此 IDE 可让人们高效地创建代码并通过自动完成的函数功能节省开发者的时间,该功能在编写代码时会建议 Python 中可用的关键字,当编写诸如“if”之类的关键字时,它知道有关代码的所有信息链接的意图语句并突出显示你的代码语法以及可以探索的关联内容。当你在程序中输入错误或忘记某些内容时,它会告诉错误在哪里。
如果考虑使用 PyCharm 作为默认 IDE ,它的安装其实也很容易。
简而言之,JetBrains 的 PyCharm 是 Python 开发人员最常用和最喜欢的集成开发环境 (IDE),因为它有许多工具可以帮助您编写干净的代码,并且自动完成功能使其成为开发人员的最佳选择。
2. Jupyter Notebook
Jupyter notebook 是一种在数据科学家和机器学习工程师中享有盛誉的 IDE,因为它可以促进代码的创建和执行,并且您只需执行一个单元来测试代码,而不是像其他 IDE 一样运行整个程序。
IDE 在浏览器上运行,你可以为代码和标题添加注释并将它们导出为 pdf 或 .ipynp 文件,如果要进行 3D 可视化,它也是一个不错的选择。
简而言之,Jupyter 是用于代码协作的最佳 Python 工具之一。
3. Keras
Keras 是一种人工智能工具或 API 内置于 TensorFlow 和许多相关库(例如 Theano 和 CNTK)之上,它用来创建深度神经网络并以某种方式模仿人脑并简化这些深度神经网络的创建。
由于Keras是开源的,它吸引了更多的贡献者来开发它,并使神经网络的创建就像输入一些命令和堆叠层一样简单。
4. pip
如果你已经学习了 Python 语言,并且想成为数据科学、人工智能或数据分析等领域之一的专家,需要再安装一些软件包才能做到这一点,这里介绍一个名为 Pip 的智能工具。
Pip (Python Package Index)是非常有用的Python 工具之一,每个开发人员都应该拥有它,它可以安装过你想在程序中使用的任何 Python 包。
你所要做的就是输入 pip 然后输入那个包名称,这个智能工具会为你下载并安装它。当然,它需要一个互联网连接才能做到这一点,你还必须始终保持更新它,以确保以更有效的方式工作。
5. Scikit-Learn
Scikit-Learn 是一个开源机器学习库,建立在许多其他库之上,例如用于数据可视化的 matplotlib、用于数学计算的NumPy和用于科学计算的 scipy 以及许多使 Scikit-Learn 更加强大的库。
假设您对 Python 有一定的了解,并且想成为数据科学或机器学习方面的专家,您可以使用一个名为Scikit-learn的简单高效的工具。
这个工具有一些内置的包,用于对你的数据执行机器学习算法,比如分类和线性回归等等。
您还可以使用他们的内置数据对它们执行数据科学或分析库,而无需搜索网络和下载这些数据。
简而言之,它是数据科学家和机器学习工程师执行与数据分析和机器学习相关的许多任务(例如分类回归聚类等)的绝佳工具。这是一个Python 库,应该在 Python 开发人员工具集中
6. Sphinx
使 Python 如此成功的一件事是您可以在网上找到的各种代码,比如 GitHub 或其他托管代码网站。
许多开发人员构建自己的开源程序并让其他人使用它们,为此,您必须为您的代码生成文档,这就是 Sphinx 的好处。
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。