《藏海花》开播 孙一理用角色魅力拉开雪域篇章

由企鹅影视、量子泛娱、南派泛娱出品的当代题材网络剧《藏海花》已于近期开播。该剧改编自南派三叔同名小说,由韩青担任总导演,南派三叔担任总编剧,张鲁一、文咏珊主演,孙一理出演。该剧顺接《盗墓笔记》本传剧情,讲述了2010年吴邪从尼泊尔回中国,因在西藏墨脱一个邮局内发现一幅油画,从而经历了一场波诡云谲的冒险经历的故事。

剧中孙一理饰演藏地寺庙的副主持德仁一角,在吴邪进入雪山秘境中起到了关键作用。当年的张起灵来到这里,就是为了寻找一位叫德仁的朋友,可谁知德仁却死在了房间里,更奇怪的是,当年少的喇嘛翻开记录竟发现此修行场的每一代都有一位叫德仁的主持,似乎一直在这里静静等候张起灵的到来,而这雪域深处的背后又有怎样的秘密呢?让我们拭目以待!

不论是近代传奇剧的《光芒》还是灾难动作片的《峰爆》,孙一理一直不屈于自我,多方面尝试,此次《藏海花》中的德仁一角更是让人惊喜连连,眼神坚定,表情凝重严肃,浑身散发着一种摄人的气势与常年久住雪山寺庙的喇嘛形成了完美诠释,以气氛抓人心,用角色引共鸣,这也是小角色的魅力所在。

据悉,在近期热播的《多大点事儿》中也有孙一理的身影,饰演一位一门心思做生意的市井小人物方如期,他在北京胯骨轴子胡同中又会发生什么有意思的事情呢,让我们一起同步开追!

内容概要:本文详细介绍了如何利用MobileNet和TensorFlow开发个高效的移动端垃圾分类系统。首先,作者使用Kaggle上的垃圾分类数据集进行预处,采用ImageDataGenerator进行数据增强,确保模型能够应对不同拍摄条件下的垃圾图像。接着,通过迁移学习方法,使用预训练的MobileNetV2作为基础模型,并对其顶部结构进行了修改,以适配四分类任务。为了防止过拟合,加入了GlobalAveragePooling2D和Dropout层。训练过程中采用了Adam优化器和余弦退火学习率调度策略,同时使用ReduceLROnPlateau回调机制动态调整学习率。最后,将模型转换为TFLite格式以便在移动设备上高效运行,并解决了RGB通道顺序的问题,使得模型能够在红米Note等低端设备上流畅运行,达到60fps的速度,内存占用仅200MB。 适合人群:对机器学习、深度学习感兴趣的开发者,尤其是希望了解如何在移动端部署图像分类模型的研究人员和技术爱好者。 使用场景及目标:适用于需要快速、准确地进行垃圾分类的应用场景,如智能垃圾桶、环保应用等。目标是提高垃圾分类效率,减少人为错误,推动智能化垃圾分类系统的普及。 其他说明:文中提到的些优化技巧,如数据增强、模型结构调整以及学习率调度等,对于提升模型性能至关重要。此外,针对实际部署中遇到的问题,如RGB通道顺序不致等,提供了具体的解决方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值