容斥原理

知识点

符号,公式

\left [ x \right ] 这是向下取整符号,如:[9999.9999]=9999,[-1.5]=-1
1~n被k整除个数:\left [ \frac{n}{k} \right ]

0~n被k整除个数:\left [ \frac{n}{k} \right ]+1

今天的内容不会涉及高中的集合,会用图片讲解

 维恩图

题目描述 

1.求0\sim n(0\leq n\leq1e12)中n只能被3或5中一个数整除的数的个数

2.求0\sim n(1\leq n\leq1e12)中n只能被x或y(1\le x,y\le 100)中一个数整除的数的个数

 思路&代码

1

直接套公式

\therefore answer=\left [ \frac{n}{3} \right ]+\left [ \frac{n}{5} \right ]-\left [ \frac{n}{15} \right ]+1

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int main(){
	ll n;
	cin>>n;
	cout<<n/3+n/5-n/15+1;
    return 0;
}

2

先分析一下x=8,y=12的情况Y表示能整除

xy
8Y
9
10
11
12Y
13
14
15
16Y
17
18
19
20
21
22
23
24YY

我们知道lcm(8,12)=24 因此公式为:

answer=\left [ \frac{n}{x} \right ]+\left [ \frac{n}{y} \right ]-\left [ \frac{n}{lcm(x,y)} \right ]

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll f(ll x,ll y){
    if(y==0) return x;
    return f(y,x%y);
}
int main(){
	ll x,y,n;
    cin>>x>>y>>n;
    if(x<y){
        int temp;
        temp=x;
        x=y;
        y=temp;
    }
    ll a=f(x,y);
    cout<<(n/x)+(n/y)-n/(x*y/a);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值