Python 分析电影《南方车站的聚会》

在这里插入图片描述

从图中我们可以看到目前有 13 万多人评分,达到了 7.5 分,打 4 星和 3 星的居多,并非网上一些人所说的口碑两极分化(如果两级分化,应该是打 5 星 和 1 星的居多吧?!)。

页面向下拉到影评位置,如下图所示:

在这里插入图片描述

我们可以看到有 5 万多条影评,目前豆瓣对查看影评数据的限制是:未登录最多可以查看 200 条数据,登录用户最多可以查看 500 条数据,我们要做的是通过 Python 爬取豆瓣 500 条影评数据,然后进行数据分析。

首先获取影片列表 URL,具体操作为:点击上图中 全部 52846 条,进入影评列表首页,如下图所示:

在这里插入图片描述

但我们发现一个问题,该 URL 参数中并没有行号等信息(实现翻页需要),这个问题我们只需点击后页按钮即可看到,结果如图所示:

在这里插入图片描述

现在我们可以从 URL 中看到这些信息了,因 start 参数为变量,我们将上面 URL 修改为:https://movie.douban.com/subject/27668250/comments?start=%d&limit=20&sort=new_score&status=P 作为爬取开始 URL。

接着我们看一下如何实现登陆,首先打开登录页,如下图所示:

在这里插入图片描述

我们先在手机号/邮箱密码输入框处随意输入(不要输入正确的用户名和密码),再按 F12 键打开开发者工具,最后点击登录豆瓣按钮,结果如图所示:

在这里插入图片描述

我们点击上面图中所示 basic 项,点击后结果如图所示:

在这里插入图片描述

此时可以看到 Request URL(登录所需 URL) 和 Form Data 项,这两项是我们登录时需要的,当然我们还需 User-Agent,点击上面图中所示的 Request Headers 项即可看到,如图所示:

在这里插入图片描述

所需要的东西都找好了,接下来就是具体实现了,豆瓣登录和影评数据爬取的具体实现如下所示:

import requests

import time

import random

from lxml import etree

import csv

新建 csv 文件

csvfile = open(‘南方车站的聚会.csv’,‘w’,encoding=‘utf-8’,newline=‘’)

writer = csv.writer(csvfile)

表头

writer.writerow([‘时间’,‘星级’,‘评论内容’])

def spider():

url = ‘https://accounts.douban.com/j/mobile/login/basic’

headers = {“User-Agent”: ‘Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)’}

comment_url = ‘https://movie.douban.com/subject/27668250/comments?start=%d&limit=20&sort=new_score&status=P’

data = {

‘ck’: ‘’,

‘name’: ‘自己的用户名’,

‘password’: ‘自己的密码’,

‘remember’: ‘false’,

‘ticket’: ‘’

}

session = requests.session()

session.post(url=url, headers=headers, data=data)

总共 500 条,每页 20 条

for i in range(0, 500, 20):

获取 HTML

data = session.get(comment_url % i, headers=headers)

print(‘第’, i, ‘页’, ‘状态码:’, data.status_code)

暂停 0-1 秒

time.sleep(random.random())

解析 HTML

selector = etree.HTML(data.text)

获取当前页所有评论

comments = selector.xpath(‘//div[@class=“comment”]’)

遍历所有评论

for comment in comments:

获取星级

star = comment.xpath(‘.//h3/span[2]/span[2]/@class’)[0][7]

获取时间

t = comment.xpath(‘.//h3/span[2]/span[3]/text()’)

获取评论内容

content = comment.xpath(‘.//p/span/text()’)[0].strip()

排除时间为空的项

if len(t) != 0:

t = t[0].strip()

writer.writerow([t, star, content])

接下来我们通过词云直观的来展示下整体评论情况,具体实现如下所示:

import csv

import jieba

from wordcloud import WordCloud

import numpy as np

from PIL import Image

jieba 分词处理

def jieba_():

csv_list = csv.reader(open(‘南方车站的聚会.csv’, ‘r’, encoding=‘utf-8’))

print(‘csv_list’,csv_list)

comments = ‘’

for i,line in enumerate(csv_list):

if i != 0:

comment = line[2]

comments += comment

print(“comment–>”,comments)

jieba 分词

words = jieba.cut(comments)

new_words = []

要排除的词

remove_words = [‘以及’, ‘在于’, ‘一些’, ‘一场’, ‘只有’,

‘不过’, ‘东西’, ‘场景’, ‘所有’, ‘这么’,

‘但是’, ‘全片’, ‘之前’, ‘一部’, ‘一个’,

‘作为’, ‘虽然’, ‘一切’, ‘怎么’, ‘表现’,

‘人物’, ‘没有’, ‘不是’, ‘一种’, ‘个人’

‘如果’, ‘之后’, ‘出来’, ‘开始’, ‘就是’,

‘电影’, ‘还是’, ‘不是’, ‘武汉’, ‘镜头’]

for word in words:

if word not in remove_words:

new_words.append(word)

global word_cloud

用逗号分隔词语

word_cloud = ‘,’.join(new_words)

生成词云

def world_cloud():

背景图

cloud_mask = np.array(Image.open(‘bg.jpg’))

wc = WordCloud(

背景图分割颜色

background_color=‘white’,

背景图样

mask=cloud_mask,

显示最大词数

max_words=600,

显示中文

font_path=‘./fonts/simhei.ttf’,

字的尺寸限制

min_font_size=20,

max_font_size=100,

margin=5

)

global word_cloud

x = wc.generate(word_cloud)

生成词云图片

image = x.to_image()

展示词云图片

image.show()

保存词云图片

wc.to_file(‘wc.png’)

整体评论词云图

在这里插入图片描述

因为有人说了影片口碑两级分化,接下来我们看一下打 1 星和 5 星的词云效果如何,主要实现如下所示:

for i,line in enumerate(csv_list):

if i != 0:

star = line[1]

comment = line[2]

一星评论用 1,五星评论用 5

if star == ‘1’:

comments += comment

一星评论词云图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值