- 博客(5)
- 收藏
- 关注
原创 DIP实验5:阈值算法实现与GUI应用
手动阈值:我们自己指定一个 0–255 的阈值,对应灰度图简单分割,直观但需要反复试验找到合适值。双峰法:先画灰度直方图,找到出现次数最多的两个灰度峰,然后取它们的平均值作为阈值。相比手动更自动化,但对双峰明显的图像效果最佳。迭代法:以图像平均灰度为初始值,把像素分成两组计算各自平均灰度,然后更新阈值,重复直到收敛。适合灰度分布较均匀的图像,过程也比较容易理解。Otsu 最佳阈值:通过遍历所有可能阈值,计算类间方差并选出最大者作为分割点,通常能自动找到最优阈值,适用范围广,但计算量相对略高。
2025-05-31 13:59:30
870
1
原创 DIP实验4
本次基于 PyQt5 与 OpenCV 的图像处理工具开发,实现了加载/保存、灰度化、旋转、锐化、去噪、边缘检测、频域变换与滤波、直方图均衡和灰度变换等功能。界面采用左侧滚动控制面板、右侧并排展示原始与处理后图像的布局,支持深色主题,美观易用。处理流程中,针对 DFT/DCT 运算使用np.log1p与归一化避免溢出,增加异常捕获防止闪退。实验验证了空间域和频域算法效果,并为后续添加实时参数调节、多线程及批量处理奠定了基础。
2025-05-11 14:15:03
958
原创 DIP实验3:图像噪声及图像滤波实验
在图像处理领域,均值滤波、高斯滤波、中值滤波和空域锐化滤波是常用的技术,各具特色,广泛应用于图像质量优化。均值滤波通过计算邻域像素的平均值实现图像平滑,能够快速抑制噪声,但可能导致细节模糊,适用于简单降噪场景。高斯滤波基于高斯分布加权邻域像素,在有效降噪的同时较好地保留图像边缘和细节,常用于图像预处理。中值滤波采用排序统计原理,取邻域像素中值替换中心像素,对椒盐噪声等脉冲干扰尤为有效,且能保持图像轮廓清晰。这些滤波技术让我感受到图像处理领域在技术进步中的智慧与权衡。
2025-04-13 16:46:46
754
原创 DIP实验2
通过第二次实验,我对数字图像处理的基础理论建立了更完整的认知框架。在完成灰度映射、代数运算、直方图重构及频域转换四大模块的代码实践后,已经能大概分析算法实现的关键步骤:从线性变换的参数调节到噪声模型的构建,从直方图均衡的数学推导到频域分析的核心流程。
2025-03-29 16:53:02
1088
原创 数字图像处理--图像的读取、显示和保存
这意味着,如果你用 OpenCV 读取了一张彩色图片,然后直接用 matplotlib 来显示,图片的颜色就会出现偏差。执行这行代码后,你会看到一个名为 "22" 的窗口弹出,显示你指定的图片。这是因为 OpenCV 读取的 BGR 图片被 matplotlib 当成了 RGB 图片来处理,导致蓝色和红色通道的位置互换了。相比 OpenCV,matplotlib 在展示图片时更加灵活,尤其是在需要对图片进行标注或者同时展示多张图片时。这个函数的三个参数分别代表画布的行数、列数和当前图片的位置。
2025-03-14 20:38:58
535
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅