文章目录:
一、相关概念
单一的数据结构 —— 关系:
现实世界的实体以及实体间的各种联系军用关系来表示。
逻辑结构 —— 二维表:
从用户角度,关系模型中数据的逻辑结构是一张二维表,建立在集合代数的基础上。
域(Domain):一组具有相同数据类型的值的集合。
笛卡尔积(Cartesian Product):
给定一组域D1,D2,…,Dn,这些域可以是相同的。
D1,D2,…,Dn的笛卡尔积为:
D1×D2×…×Dn ={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}
例:
D1=导师集合SUPERVISOR={张清玫,刘逸}
D2=专业集合SPECIALITY={计算机专业,信息专业}
D3=研究生集合POSTGRADUATE={李勇,刘晨,王敏}
D1,D2,D3的笛卡尔积为:
D1×D2×D3={
(张清玫,计算机专业,李勇),(张清玫,计算机专业,刘晨),
(张清玫,计算机专业,王敏),(张清玫,信息专业,李勇),
(张清玫,信息专业,刘晨),(张清玫,信息专业,王敏),
(刘逸,计算机专业,李勇),(刘逸,计算机专业,刘晨),
(刘逸,计算机专业,王敏),(刘逸,信息专业,李勇),
(刘逸,信息专业,刘晨),(刘逸,信息专业,王敏) }
基数为2×2×3=12
笛卡尔积 ——> 不同集合内的元素进行排列组合
元组(Tuple):笛卡尔积中每一个元素(d1,d2,…,dn)叫作一个n元组(n-tuple)或简称元组。
分量(Component):笛卡尔积中每一个元素(d1,d2,…,dn)中的每一个值di叫作一个分量。
基数(Cardinal number):若Di(i=1,2,…,n)为有限集,其基数为mi(i=1,2,…,n),则D1×D2×…×Dn的基数M为:
笛卡尔积的表示方法:笛卡尔积可表示为一张二维表,表中的每行对应一个元组,表中的每列对应一个域。
例:上个例子的笛卡尔积用二维表表示:
关系(Relation):
D1×D2×…×Dn的子集叫作在域D1,D2,…,Dn上的关系,表示为R(D1,D2,…,Dn)。其中:
R为关系名
n为关系的目或度(Degree)——> 关系中属性的个数 ——> n目关系必有n个属性
关系中的元组:关系中的每个元素,通常用t表示
单元关系(Unary relation):n = 1
二元关系(Binary relation):n = 2
关系的表示:关系也是一个二维表,表的每一行对应一个元组,表的每一列对应一个属性,属性的取值为一个域。
属性(Attribute):关系中不同列可以对应相同的域,为了加以区分,必须对每列起一个名字,称为属性。
码(Key):一个具有特殊性质的属性,通过码可以唯一确定一行。
- 候选码(Candidate key):若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码;
- 全码(All-key):关系模式的所有属性组是这个关系模式的候选码,称为全码;
- 主码(Primary key):若一个关系有多个候选码,则选定其中一个为主码;
- 主属性(Prime attribute):候选码的诸属性称为主属性;
- 非主属性(Non-Prime attribute):不包含在任何侯选码中的属性称为非主属性或非码属性(Non-key attribute);
三类关系:
- 基本关系(基本表 / 基表):实际存在的表,是实际存储数据的逻辑表示;
- 查询表:查询结果对应的表;
- 视图表:由基本表或其他视图表导出的表,是虚表,不对应实际存储的数据;
基本关系的性质:
- 列是同质的;
- 不同的列可出自同一个域,其中的每一列称为一个属性,不同的属性要给予不同的属性名;
- 列的顺序无所谓,列的次序可以任意交换;
- 行的顺序无所谓,行的次序可以任意交换;
- 任意两个元组的候选码不能相同;
- 分量必须取原子值,这是规范条件中最基本的一条;
二、关系模式
关系模式(Relation Schema)
是对关系的描述。关系模式是型,关系是值。
其中包含:
- 元组集合的结构:属性构成、属性来自的域、属性与域之间的映射关系;
- 一个关系通常由赋予它的元组语义确定
- 现实世界还存在着完整性约束;
关系模式的定义
关系模式可以形式化地表示为:R(U,D,DOM,F)
R:关系名
U:组成该关系的属性名的集合
D:属性组U中属性所来自的域
DOM:属性向域的映像集合
F:属性间的数据依赖关系集合