在低显存GPU上运行PixArt-Σ/Flux.1图像生成:Python简短教程

由PixArt-Σ在本地生成,所需显存不超过8Gb。

图像生成工具的热度从未如此高涨,而且它们也变得越来越强大。像PixArt Sigma和Flux.1这样的模型处于领先地位,这得益于它们的开源权重模型和宽松的许可协议。这种设置允许进行创造性的尝试,包括在不共享计算机外部数据的情况下训练LoRA模型。

然而,如果你使用的是较旧或显存较少的GPU,使用这些模型可能会有些挑战。通常在质量、速度和显存使用之间存在权衡。在这篇博文中,我们将重点优化速度和减少显存使用,同时尽量保持质量。这种方法在PixArt上效果尤其好,因为它模型较小,但在Flux.1上的效果可能有所不同。最后,我会分享一些针对Flux.1的替代解决方案。

PixArt Sigma和Flux.1都是基于Transformer的,这意味着它们可以利用大型语言模型(LLM)使用的量化技术。量化涉及将模型组件压缩,从而占用更少的内存。这允许你将所有模型组件同时保存在GPU显存中,生成速度会比在GPU和CPU之间移动权重的方法更快,因为后者会减慢处理速度。

让我们开始设置环境吧!

设置本地环境

首先,确保你已经安装了Nvidia驱动程序和Anaconda。

接下来,创建一个Python环境并安装所有主要需求:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia 然后安装Diffusers和Quanto库:

pip install pillow==10.3.0 loguru~=0.7.2 optimum-quanto==0.2.4 diffusers==0.30.0 transformers==4.44.2 accelerate==0.33.0 sentencepiece==0.2.0 量化代码


以下是一个让你入门的PixArt-Sigma简单脚本:

```
from optimum.quanto import qint8, qint4, quantize, freeze

from diffusers import PixArtSigmaPipeline

import torch

pipeline = PixArtSigma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值